The SO2 (150-250 mg/m3) in huge amounts of electrolytic aluminum flue gases are difficult to purify with low cost. At present, the electrolytic aluminum flue gases are often discharged with dilution of air, which results in great harm to the environment. This project aims to study the regulation principle of catalyst for selective catalytic reduction SO2 (500-1200 mg/m3) with CO in the flue gases towards the urgent need of electrolytic aluminum flue gas desulfurization. The highly efficient and anti-poisoning catalyst for reduction of SO2 with CO is obtained by precise regulation the physicochemical properties of catalyst. The intrinsic relationship between the physicochemical properties of the catalyst (pore structure, phase structure, microstructure, surface oxygen vacancies, surface electron environment, surface chemical state, surface hydroxyl, etc.) and the reaction of CO reduction of SO2 is systematically studied. The In situ DRFTIR and in-situ Raman techniques are used to reveal the reaction mechanism of CO catalytic reduction SO2 and inhibition effect of impurity components on the SO2 reduction with CO at molecular level. This project will provide a systematic theoretical basis and scientific basis for purification of SO2 and resource of sulphur for electrolytic aluminum flue gases.
电解铝烟气排放量大,烟气中SO2(150-250 mg/m3)低成本净化困难,目前主要通过稀释排放,给环境带来了较大的危害。本项目针对电解铝烟气脱硫的迫切需求,研究烟气中CO(500-1200 mg/m3)选择性催化还原净化SO2催化剂的调控制备规律,通过精确调控催化剂物化性质,获得高效抗中毒的CO还原SO2催化剂。系统研究催化剂物化性质(孔道结构、物相结构、微观形貌、表面氧空位特性、表面电子环境、表面化学状态和表面羟基等)与CO还原SO2反应的内在联系规律。运用原位红外光谱及原位拉曼光谱技术,从分子水平上揭示CO还原SO2反应机理和烟气中杂质组分对CO还原SO2反应的抑制机制。本项目将为电解铝烟气SO2净化及资源化耦合CO减排提供系统的理论基础和科学依据。
电解铝烟气排放量大,烟气中SO2低成本净化困难。目前主要通过稀释排放,但随着排放标准的日益严格和对基准排气量的限定,需研发匹配电解铝烟气特征的高效脱硫技术。本项目精确调控催化剂物化性质,筛选出高效抗中毒的CO还原SO2催化剂。通过调控微观结构提高活性中心含量,调控催化剂表面氧空位特性来抑制其吸附活化O2,增强其对CO吸附活化进而抑制催化剂表面硫酸盐化。对不同载体和不同活性组分的催化剂进行筛选,发现0.2 wt.% Ir/CeO2催化剂在反应空速10000h-1,反应温度375℃时SO2转化率为98.6%,CO转化率为95.5%,硫磺产率达96.7%。Ir物种在载体表面高度分散,对Ce4+/Ce3+氧化还原循环起着重要作用。Ce4+/Ce3+氧化还原循环影响Ir/CeO2催化剂表面氧空位含量变化,从而影响Ir与CeO2的界面相互作用,影响催化剂表面对反应分子的吸附活化。第一性原理计算模拟结果发现Ir原子在CeO2(111)的最稳定吸附位是表面的O原子位点,Ir的引入主要影响SO2在催化剂表面的吸附,且Ir/CeO2表面CO和SO2分子具有较强的共吸附能,吸附结构最稳定时CO:SO2比例为2:1。研究载体结构的影响时发现,CeO2形貌为棒状、前驱体搅拌时间为6小时且结晶度较高的Ir/CeO2具有优异的CO催化还原SO2活性。棒状载体催化剂具有高的Ce3+及Oβ含量占比,导致催化剂上Ir-O-Ce之间存在较强的界面电荷转移;前驱体搅拌时间影响载体结晶度、负载Ir0及OV含量,提高催化剂表面活性位点及金属-空位-载体界面效应。研究成果分析了催化剂物化性质与CO还原SO2反应的内在联系规律,从分子水平上揭示CO还原SO2反应机理,为电解铝烟气SO2净化及资源化耦合CO减排提供系统的理论基础和科学依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
新疆软紫草提取物对HepG2细胞凋亡的影响及其抗小鼠原位肝癌的作用
Glycyrrhizic acid based self-assembled helical nanostructures as scaffolds for asymmetric Diels-Alder reaction
铁酸锌的制备及光催化作用研究现状
有色冶炼烟气中铊的催化氧化净化基础研究
还原烟气中硫物种的催化转化及资源化应用基础研究
液相催化氧化-微生物法同时脱除烟气中SO2和NOx应用基础研究
功能化离子液体用于同时脱除烟气中SO2和CO2的基础研究