Superlubricity is regime of motion in which friction nearly vanishes. In this regime, both the wear and dissipation are extremely low. The wide application of superlubricity in future will be a great progress in the history of human civilization. However, limited by the instruments, the nature and mechanism of superlubricity is still unclear. Especially to liquid superlubricity, the mechanism at molecular level is still dubious. This project is aiming to reveal the molecular behavior of the nano liquid superlubricity film, by studying the structure, orientation and degree of order of the lubricant molecules. By developing a new real-time spectroscopic system, with nanoscale vertical resolution and sub millisecond time resolution, the real-time detection and observation of the nano superlubricity film can be achieved. Based on this setup, the spatial distribution and configuration of molecules both in bulk and at interface can obtained. Furthermore, during the forming process of superlubricity, the evolutionary regularity of molecular structure, orientation and degree of order will be captured rapidly. On the base of physical chemistry and molecular spectroscopy, finally we will be able to illuminate the mechanism of typical liquid superlubricity systems at molecular level, and propose new ways and methods to achieve superlubricity by controlling the molecular behaviors. The work of this project will not only have significant value in exploring the mechanism of lubrication and friction, enriching the lubrication theory, but also can favor the development of new liquid superlubricity materials, resulting in the contribution to energy saving and consumption reducing.
近零摩擦的润滑状态被称为超滑,该状态下摩擦体系具有极低磨损及能耗。超滑状态的普遍应用,将是人类文明史的一大进步。受研究手段限制,超滑的本质和机制目前尚不清楚,对于液体超滑来说,尤其缺乏对超滑形成过程中分子级行为机制的了解。本课题将针对纳米级液体超滑膜中的分子结构、取向及有序度等分子级行为特性,开发具有纳米级垂直空间分辨率、亚毫秒级时间分辨率的超滑分子光谱实时在线探测系统。首先研究润滑分子行为在两表面间的空间分布、构型,及其对超滑状态的影响,同时研究超滑形成过程中界面及体相分子结构、取向及有序度等随时间的演变规律。进而结合物理化学、分子光谱等理论,最终揭示典型液体超滑体系的分子级机制,提出实现液体超滑的新方法和途径。本课题的研究不但对探索润滑和摩擦本质、丰富润滑理论具有重要学术意义和价值,并且能够通过揭示超滑机理,逐步实现对超滑的控制,促进新型超滑新材料的开发,为节能降耗做出贡献。
近零摩擦的润滑状态被称为超滑,该状态下摩擦体系具有极低磨损及能耗。超滑状态的普遍应用,将是人类文明史的一大进步。受研究手段限制,超滑的本质和机制目前尚不清楚,尤其缺乏对超滑形成过程中分子级行为机制的了解。本课题针对纳米级液体超滑膜中的分子结构、取向及有序度等分子级行为特性,开发具有亚纳米级垂直空间分辨率、纳秒级时间分辨率的超滑分子光谱实时在线探测系统。研究了剪切作用下润滑分子行为在两表面间的空间分布、构型,及其对超滑状态的影响,同时研究超滑形成过程中界面及体相分子结构、取向及有序度等随时间的演变规律,进而结合物理化学、分子光谱等理论,最终揭示典型液体超滑体系的分子级机制,并利用外场对分子结构进行调控,进而实现液体超滑状态的调控。本课题的研究不但对探索润滑和摩擦本质、丰富润滑理论具有重要学术意义和价值,并且能够通过揭示超滑机理,逐步实现对超滑的控制,促进新型超滑新材料的开发,为节能降耗做出贡献。
{{i.achievement_title}}
数据更新时间:2023-05-31
农超对接模式中利益分配问题研究
结核性胸膜炎分子及生化免疫学诊断研究进展
原发性干燥综合征的靶向治疗药物研究进展
基于Pickering 乳液的分子印迹技术
Wnt 信号通路在非小细胞肺癌中的研究进展
油基超滑的分子作用规律及超滑机理研究
碳薄膜界面摩擦催化脱氢与结构演变超滑机制
基于聚合物-磷脂复合体系的液体超滑的分子机理、设计及应用研究
亚毫秒级实时三维超分辨显微方法研究及生物应用