Ammonia (NH3) is the "catalyst" to promote the formation of PM2.5 and one of the main pollution sources which cause the haze. A novel enhanced NH3-sensing mechanism of orderly/disordered multidimensional nano-junctions is proposed for the first time in this project, and a novel technique is also present for the controlled growth of multidimensional nano-junctions ternary composite NH3-sensing film system on the flexible substrate, aiming for the further improvement of NH3 sensors' properties such as sensitivity, selectivity and wearability. The main innovative researches include: (1) For the gas-sensing mechanism, the orderly/disordered multidimensional nano-junctions energy-band model will be proposed and perfected, and the mulriple gas-sensing effect will be enhanced by regulating the interface charge region and morphological structure of nano-junctions. Meanwhile, the transfer thermodynamics and kinetic equations of gas molecules will be established, and thus the universal scientific basis and contrivable strategy for the construction of high-performance NH3-sensing composite film system could be provided. (2) For the sensing-film system, the ternary composite film system with multidimensional nano-junctions will be constructed based on various NH3-sensing materials and structural levels according to the different Fermi energy. The key techniques breakthrough will be obtained, including the design of flexible functional structure, the synthesis process of sensing materials and the controlled growth of composite thin film. The principle device will be developed, and the enhanced NH3-sensing mechanism of multidimensional nano-junctions will be validated by the experiment. This work will offer the new train of thought for the study of gas sensors with high-performance, wearability and room-temperature operation, and possess the double values of both academic research and practical application.
氨气是促进PM2.5形成的“催化剂”,是造成雾霾的主要污染源之一。本项目率先提出有序/无序多维纳米结氨敏增强新机理及在柔性衬底上可控生长多维纳米结三元复合氨敏膜系的新方法,以进一步提高氨气传感器的灵敏度、选择性和可穿戴性等性能。主要创新研究包括:(1)在气敏机理方面,提出并完善有序/无序多维纳米结能带模型,通过调控纳米结界面电荷区与形态结构增强其气敏重构效应,同时建立气体分子传质热力学与动力学方程,为构建相对普适的高性能氨敏复合膜系提供科学依据与设计策略;(2)在敏感膜系方面,根据材料费米能级不同,构建基于多样化氨敏材料和结构层次的多维纳米结三元复合膜系,突破柔性功能结构设计、敏感材料合成工艺及复合薄膜可控生长等关键技术,研制原理性器件,并对多维纳米结氨敏增强机理进行实验验证。通过本项目研究,为高性能、可穿戴、常温工作的气体传感器研究提供新的思路,具有理论研究与实际应用的双重价值。
氨气是当今PM2.5污染的重要诱导因素源之一,其检测与监控对污染防治有着重要意义,需要氨气传感器具有高灵敏、轻重量、可穿戴等优点,但现有氨气传感器研究敏感机理系统性与定量化不足、功耗/灵敏度/柔性特性等方面仍有较大提升空间。针对上述问题,本项目深入研究有序/无序多维纳米结敏感机理模型、柔性衬底设计与多维纳米结复合氨敏膜系可控生长方法、气敏特性测试与机理分析等内容;聚焦气体分子与多维纳米结表/界面的理化作用过程、有序/无序多维纳米结三元复合氨敏膜系的设计策略与可控制备方法、表/界面形态与宏观敏感特性的关联机制等科学问题;突破柔性叉指电极电阻型传感功能结构设计、氨敏复合材料合成工艺、多元复合薄膜可控生长等关键技术;构建了有序/无序多维纳米结多元复合氨敏膜系,研制出多种复合薄膜柔性氨气传感器原理性器件,器件性能达到研究目标要求。基于检测与表征结果,本项目进一步构建并完善了具有一定普适性的多元复合薄膜异质增强氨敏机理模型,丰富了高性能室温氨敏复合膜系的设计策略;在氨气传感器的研发方面取得显著成果:以第一作者或唯一通讯作者发表SCI学术论文23篇,其中JCR一区论文17篇,申请发明专利9项,获军队科技进步一等奖1项(排1)、四川省技术发明一等奖1项(排2),为高性能、可穿戴室温柔性氨气传感器的研发提供了丰富的技术与理论储备。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
特斯拉涡轮机运行性能研究综述
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
中国参与全球价值链的环境效应分析
同轴异质结构柔性纳米纤维氨气传感器的构建及其氨敏机理研究
纳米晶氧化锡基异质结的有序生长与气敏效应研究
基于有序纳米纤维的异质结阵列及其气敏特性研究
有序与无序金属亚波长微纳结构的表面增强非线性