Compared with risks caused by chemical pollutants, risks caused by microbial harmful factors have some distinctive properties, such as low destructive dosage; short response time; great hazard and so on. These microbial risks must be controlled in priority during the utilization process of reclaimed water. .In order to achieve comprehensive and long-lasting control of microbial risks of reclaimed water, this project will analyze the risk formation mechanism of conventional pathogenic (indicator) microorganisms as well as some emerging microbial harmful factors, including antibiotic resistant bacteria, endotoxin and so on. Based on that, the priority microbial factors with high risks will be identified according to different usages of reclaimed water, and the control objectives of these factors as well as the corresponding approaches of risk aversion will also be proposed. .In order to improve the effectiveness of disinfection, to inhibit the reactivation of microorganisms and to reduce the associated risks during disinfection caused by toxic and harmful disinfection by-products (DBPs), this project will develop novel disinfection technologies based on electroporation, novel ultraviolet lights and advanced oxidation. Besides, conventional disinfection technologies will be optimized and combined according to the complex water quality and various usages of reclaimed water. .In order to inhibit microbial growth during the distribution and utilization of reclaimed water, this project will investigate the effects of the biodegradable organic matters (BOMs) and the microbial community structure on microbial growth. Furthermore, the BOM removal by advanced treatment will be studied, and the transformation mechanism of BOM will be revealed..Based on the research mentioned above, this project will establish the systematic control principles of microbial risks during the advanced treatment, disinfection, distribution and utilization process of reclaimed water.
在再生水利用过程中,与化学污染物导致的风险相比,由生物有害因子带来的风险具有致害剂量低、显效时间短、危害程度大等特点,是必须优先控制的重要问题。.本研究以全面、长效控制再生水利用的生物风险为目标,针对再生水的主要用途,分析常规病原(指示)微生物和抗生素抗性菌、内毒素等新兴生物有害因子的风险产生机制,识别优先控制的高风险因子,提出控制目标及风险规避措施;研究基于细胞电穿孔、新型紫外线光源和高级氧化的消毒新原理和新技术,并针对再生水水质复杂、用途多样等特点,开展消毒工艺优化研究,在提升灭活效果、抑制复活的同时,降低由有毒有害消毒副产物等带来的伴生风险;揭示再生水中生物可同化有机物、微生物群落结构对微生物(膜)生长的影响,创新相应的控制原理。综合上述成果,围绕再生水深度处理、消毒、输配和利用等各个环节,提出生物风险全流程系统控制原理和优化方法,为保障再生水的安全高效利用提供理论基础。
再生水利用是统筹解决我国水资源短缺、水环境污染等问题的重要途径。再生水利用的关键是水质安全保障和风险控制。其中,由生物有害因子引发的生物风险具有感染几率高、致害剂量低、显效时间短、危害程度大等特点,会对人体健康和生态环境造成潜在危害,需要高度关注。.本项目以全面、长效控制再生水利用的生物风险为目标,围绕再生水的生物风险产生机制与控制原理开展了系统研究,取得了以下成果:.(1)揭示了内毒素在再生水典型处理过程的变化规律,发现氯消毒可以削减内毒素吸入暴露风险。明确了再生水处理过程抗生素抗性基因的转移特性,发现耐药基因转移是生物处理后耐药细菌群落多样性显著提升的主要原因。.(2)提出了再生水臭氧/紫外线/氯协同消毒工艺优化方法。掌握了紫外LED消毒技术和电极内过滤消毒技术的基本原理及其对微生物的灭活特性。发现280 nm LEDs可以显著抑制大肠杆菌的光复活。筛选出电极内过滤碳纤维毡电极材料,发现其在电压为2V,水力停留时间为2 s时,即可实现对细菌的高效灭活。.(3)阐明了微生物在不同再生水中的生长繁殖特性,发现经混凝、臭氧等深度处理后,再生水中生物可同化有机碳(AOC)水平明显上升。揭示了再生水中AOC的临界浓度及控制目标,当再生水AOC浓度高于200 μg/L时,氯消毒剂量≥0.1 mg/L即可有效控制微生物的再生长。.(4)提出了基于关键控制点浓度和去除能力评价的再生水水质安全保障方法,形成了包括再生水深度处理、消毒、输配和利用等环节的生物风险全过程系统控制原理。.本项目在Water Research等高水平学术期刊上共发表论文112篇,包含第一标注SCI论文50篇,出版专著1部,申请专利16项,授权发明专利7项、实用新型专利7项、软件著作权1项,支撑编制国际、国家和地方标准10项,获ISO卓越贡献奖、省部级科技进步一等奖等奖励4项,发起和举办了系列学术会议,培养已出站博士后4人,已毕业博士生和硕士生12人。.本项目的研究成果可为再生水的生物风险控制和安全高效利用提供理论基础和技术支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
硬件木马:关键问题研究进展及新动向
自然灾难地居民风险知觉与旅游支持度的关系研究——以汶川大地震重灾区北川和都江堰为例
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
臭氧对再生水毒性生成潜势的影响机制与控制原理
再生水中低剂量残留有害物的生物毒性鉴别和控制原理
光照对再生水氯消毒副产物及其细胞毒性的控制机制与强化原理
再生水生态储存的水质变化机制与调控原理