High-brightness neutron source based on linear accelerator is an important research tool for material irradiation, neutron imaging, and tumor therapy. At present the international small neutron source can not take into account the compact mobile and high energy demand simultaneously. Based on the present development and the previous research experience, the applicant has proposed the hybiord structure of four-vane type RFQ and CH-DTL to realize the miniaturization of 11MeV deuterium linear accelerator. The objective of the study is to achieve an output energy of 11 MeV in 6m, a peak beam current greater than 30 mA, and an average beam current greater than 0.5 mA deuterium ion. The key scientific problems of the application are as fellowing: the design of the beam dynamic using of a strong focus structure, focusing on RFQ accelerator and DTL between the optimal match to meet the high efficient transmission of the high intensity low-energy deuterium ion beam ; the electromagnetic optimization design of couping section , to achieve the flatness of electromagnetic field distribution and stability of the electromagnetic field mode within the entire cavity. The system is simple and reliable, and can meet the needs of mobile high energy neutron source. Through this application, the dynamics and key techniques of 11MeV deuterium ion hybrid accelerator were completed, and the preliminary design feasibility study was completed.
基于直线加速器的高亮度中子源是人类进行材料辐照、中子成像、肿瘤治疗等领域的重要研究工具。目前国际上的小型中子源不能兼顾紧凑可移动和高能量的需求。申请人基于国内外的发展现状和个人的研究经验,提出了利用四翼型RFQ和CH-DTL结合的混合腔体来实现11MeV氘离子直线加速器的小型化。研究目标是在6 m内完成输出能量11MeV,峰值流强大于30mA,平均流强大于0.5 mA氘离子的加速传输。该申请的关键科学问题主要有:设计动力学上采用紧凑的强聚焦结构,着重研究RFQ加速器和DTL之间的优化匹配,满足强流低能氘离子束的高效传输;射频结构方面主要进行耦合段的电磁优化设计,实现整个腔体内电磁场平整分布以及稳定的电磁场模式。系统简单可靠,完全可以满足可移动式的高能量中子源的需求。通过该申请,完成11MeV氘离子混合型加速器的动力学和关键技术研究,并初步完成该设计可行性研究。
基于直线加速器的高亮度中子源是人类进行材料辐照、中子成像、肿瘤治疗等领域的重要研究工具。本课题针对11MeV氘离子直线加速器小型化关键技术展开,主要目标是其目标是在6 m内完成输出能11MeV,峰值流强大于30mA,平均流强大于0.5 mA氘离子的加速传输。动力学方面进行了紧凑型RFQ与高梯度DTL加速器动力学的设计,RFQ和DTL加速器总长5.6m,将氘束加速到11.2MeV,出口峰值流强为33.86mA,RFQ+DTL整体传输效为96.76%,总结得到不同聚焦结构的平滑匹配方法,有效了降低了发射度增长和束流损失。在高频研究方面,完成了紧凑型耦合腔体的耦合原理和方法的研究,实现了RFQ和DTL不同射频结构的耦合工作和幅值调整优化,并成功研制了750MHz耦合腔体的模型样机,完成了高频性能测试和物理验证。整体系统紧凑可靠,可以满足的高能量中子源小型化可移动的需求。项目发表了四篇论文,培养博士和硕士各一名。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
11MeV氘离子直线加速器小型化关键技术研究
未来高能电子直线对撞机及新型直线加速器关键物理与实验研究
强流质子直线加速器前端关键技术及其RAMI技术的研究
用于离子直线加速器的高分辨纵向束团形状测量装置研究