Breast cancer is a problem to be solved urgently in biomedine, which severely threatens the health of the worldwide women. Molecular bioinformation become a breakthrough in the study of breast cancer area. Along with the development of information technology, the latest achievements and discoveries in breast cancer research are mostly emerging from the published journals by electronic text form. This could carry a lot of molecular bio-information which make that text mining has great potential in breast cancer research. Mining the biomedical literature could extract some rich molecular biology information of breast cancer, and discover new biomedical knowledge. Based on the background, this research mainly includes the following: (1) recognition of static molecular biology information of breast cancer, and an identified approach based on deep learning and ontologies for recognizing molecular biology entities associated with breast cancer from literature; (2) extraction of dynamic molecular biology information of breast cancer, and an extracted approach based on statistical reasoning and deep language parsing for the quantitative and detail relationships between molecular entities to reveal the molecular mechanisms of breast cancer. (3) corpus construction based on the extracted molecular bio-information and collected breast cancer literature for enriching biomedical corpora, and development of molecular biology information platform of breast cancer for biomedical knowledge base.
乳腺癌严重威胁着世界范围内女性的健康,是现代生物医学亟需解决的难题,与之相关的分子生物信息成为研究的一个突破口。随着信息技术的发展,不断涌现出来的乳腺癌研究中的新成果及新发现大多以电子文献形式发布出来,携带着大量的分子生物信息,对这些文献进行挖掘,可提炼丰富的乳腺癌分子生物信息,发现新的生物医学知识,从而有助于理解乳腺癌的发生机制。在这一背景下,本课题研究(1)乳腺癌静态分子生物信息的识别,发展一种基于深度学习与本体相结合的方法识别文本中的分子实体;(2)乳腺癌动态分子生物信息的抽取,提出一种基于统计推理与深层语言剖析相结合的方法,定量分析分子实体间的关系,明确乳腺癌分子功能信息,揭示乳腺癌的分子机制。(3)将抽取的分子生物信息与收集的乳腺癌文献结合构建语料库,丰富生物医学语料库的建设,同时建立乳腺癌分子生物信息平台,形成乳腺癌生物医学知识库。
乳腺癌严重威胁着世界范围内女性的健康,是现代生物医学亟需解决的难题,与之相关的分子生物信息成为研究的一个突破口。本课题旨在从计算的角度通过文本挖掘乳腺癌的两类分子生物信息,研究(1)乳腺癌静态分子生物信息的识别,发展了多种方法识别文本中的分子实体;(2)乳腺癌动态分子生物信息的抽取,定量分析分子实体间的关系,揭示乳腺癌的分子机制。(3)将抽取的分子生物信息与收集的乳腺癌文献结合构建语料库,丰富生物医学语料库的建设,同时建立乳腺癌分子生物信息平台。基于所研究成果,我们在国内外重要期刊、会议上发表论文十多篇,申请专利4项,培养毕业硕士生1名和在读硕士生6名。
{{i.achievement_title}}
数据更新时间:2023-05-31
论大数据环境对情报学发展的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
基于公众情感倾向的主题公园评价研究——以哈尔滨市伏尔加庄园为例
基于深度学习的海量影像文本报告与医学图像复合信息挖掘
基于深度学习的文本和语音多模态数据挖掘研究
基于深度学习框架的社交媒体信息挖掘
基于深度学习和迁移学习的非结构化临床文本挖掘的方法探索