The vertical/short take-off and landing aircraft (V/STOL) has both the high-speed cruise capability of fixed-wing aircraft and the vertical take-off and landing and hovering capability of helicopters. In this case, it has tremendous potential in military and civilian fields. This type of aircraft is capable of switching flight modes between vertical take-off and landing, short takeoff and landing, hovering, and level flight. However, when switching the modes, there would be a dramatic change on dynamic characteristics, especially during the transition process between hovering and level flight. Among them, compared to the transition from hovering to level flight, there would be more constraints and more complex dynamic characteristics to be considered in the transition from level flight to hovering. As for two typical types of vertical/short takeoff and landing aircraft, thought thrust vector aircraft and tilt-rotor aircraft have completely different dynamic characteristics, they have various common problems in the transition from level flight to hovering. This project is aimed at characterizing the general dynamics characteristics of V/STOL aircraft and scientific problems in the transition from level flight to hovering, as well as developing a control strategy and a general design approach for control laws applied to V/STOL aircraft in this transition process. Eventually, these research results of the project will contribute to V/STOL aircraft for better flight quality and better capability of handling complex missions in the transition process.
垂直/短距起降飞行器兼具固定翼飞机的高速巡航能力与直升机的垂直起降、悬停能力,在军事及民用领域具有重要的应用前景。该类飞行器具有垂直起降、短距起降、悬停、平飞等多种飞行模式,动力学特性在各种飞行模式之间切换时变化剧烈,尤以平飞与悬停两种模式之间的过渡过程最为复杂。其中,相比悬停转平飞,平飞转悬停过程中需考虑的约束条件更多、动力学特性也更为复杂。作为两种典型布局的垂直/短距起降飞行器,推力矢量飞行器与倾转旋翼飞行器虽具有完全不同的动力学特性,但在平飞转悬停过渡过程中面临较多的共性问题。项目期望通过开展研究摸清垂直/短距起降飞行器平飞转悬停过渡过程中的共性动力学特征与科学问题,通过研究获得一套可应用于典型垂直/短距起降飞行器平飞转悬停过渡过程的控制策略及控制规律通用设计方法。项目成果将对提升垂直/短距起降飞行器过渡过程飞行品质与复杂任务执行能力具有推动作用。
垂直/短距起降飞行器兼具固定翼飞机的高速巡航能力与直升机的垂直起降、悬停能力,在军事及民用领域具有重要的应用前景。该类飞行器的动力学特性在各种飞行模式之间切换时变化剧烈,尤以平飞与悬停两种模式之间的过渡过程最为复杂。其中,相比悬停转平飞,平飞转悬停过程中需考虑的约束条件更多、动力学特性也更为复杂。项目针对典型垂直/短距起降飞行器平飞转悬停过渡过程控制问题开展研究工作,取得的主要成果包括:.(1)建立了典型垂直/短距起降飞行器动力学模型,开展了动力学特性分析。建立了典型垂直/短距起降飞行器精细动力学模型,基于该模型获得了垂直/短距起降飞行器过渡过程飞行走廊,分析了过渡过程中的模态特征、操稳特性及耦合特性变化规律。通过对比分析倾转旋翼布局与推力矢量布局在过渡过程中的异同,建立了面向过渡过程控制设计的垂直/短距起降飞行器统一模型。.(2)设计了典型垂直/短距起降飞行器平飞转悬停过渡过程控制策略。研究了平飞转悬停过渡过程控制策略设计思路,设计了平飞转悬停过渡过程控制策略实时更新与轨迹在线快速优化机制。基于约束条件分析提出平飞转悬停过渡过程飞行轨迹优化目标,结合误差反向传播思想解决多性能指标非线性优化问题,降低了计算复杂性并提高了计算精度。.(3)设计了典型垂直/短距起降飞行器平飞转悬停过渡过程鲁棒控制规律。采用插值调度根据时间和最优轨迹实时生成参考输入,使得过渡过程曲线更加平滑,且过渡过程时间确定,将最优轨迹视为一种特殊的前馈,将最优轨迹中的状态视为反馈控制器的参考输入。在反馈控制器设计方面,采用级联系统反步设计思路,并通过角加速度估计进一步加强系统鲁棒性。.本项目研究成果可为解决典型垂直/短距起降飞行器平飞转悬停过渡过程控制设计问题提供理论支撑和设计方法,相关成果也可推广应用至其他具有类似特性的变构型飞行器控制系统设计。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
内点最大化与冗余点控制的小型无人机遥感图像配准
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
垂直/短距起降飞行器动力学建模与协调综合控制
垂直/短距起降飞机异类多执行器控制分配研究
战术飞机垂直或短距起降动力学与控制方法
无尾布局垂直短距起降飞机非线性动力学分析与过渡段飞行控制