High-temperature piezoelectric materials are the key materials of high-temperature piezoelectric sensors, are new generation materials with great significance to national security and sustainable economic development. This project starts from the temperature sensitivity (high thermal stability) of piezoelectric properties and high-temperature electrical isolation(low loss) of the BiFeO3-BaTiO3 based lead-free ceramics, which have been found by our group and prepared by traditional sintering methods and have excellent performance and great value of popularization. The formation and evolution and distribution of defects will be studied by the positron annihilation lifetime spectrometer, dielectric temperature spectrum and chemistry and physics of defects. The origin and action mechanism of defects will be clarified. The effects of composition, phase and crystalline structure, microstructure and defects on temperature sensitivity and high-temperature conductivity, and high-temperature impedance spectroscopy, will be investigated. The essential structural of temperature sensitivity and high-temperature conductivity mechanism will be clarified. The regulation mechanism and tailor rules of low loss and low temperature sensitivity of piezoelectric properties will be obtained by adjusting the stoichiometry ratio, acceptor and donor doping, adding third compononts and atmosphere sintering. The design principles and methods of the adapter pattern of composition, microstructure, crystalline structure and defects of high stability and low loss for piezoelectric ceramics with perovskite structure will be established. The project takes full advantage of the defects function effects, and is expected to optimize the defect structure to improve the high temperature performance. The development of this project is expected to provide new methods and ideas for the investigation of high temperature piezoelectric materials. This project is closely connected with mineral resources advantages in Guangxi and helps the sustainable and healthy development of mineral resources economy in Guangxi.
高温压电材料是高温压电传感器的关键材料,是对国家安全和国民经济发展具有重大意义的新一代材料。本课题基于前期研究发现的高温性能优异、极具推广价值的BiFeO3-BaTiO3基陶瓷压电性能的温度敏感性(高稳定)和高温绝缘性(低损耗)问题,采用正电子湮没寿命谱、介电温谱,结合缺陷化学与物理,研究缺陷的产生、演化及分布规律,理清缺陷的来源和作用机理。研究组成、物相与结构、微观结构、缺陷对压电性能温度敏感性与高温电导的影响规律,结合阻抗谱分析,阐明温度敏感性的结构本质和高温导电机理。通过气氛烧结、化学计量比调节、掺杂以及铋基铁电化合物取代获得高稳定、低损耗陶瓷的调控机理,建立钙钛矿结构陶瓷高稳定与低损耗的成分、组织、结构及缺陷适配模式设计原理与方法。课题利用缺陷的功能效应,通过优化缺陷结构改善高温性能,有望对高温压电材料的研究提供新的方法与思路。本项目结合地方资源优势,有利于广西经济可持续健康发展.
高温压电材料是航空航天、能源化工、军事等许多高科技领域电子器件迫切需求的关键材料。本项目针对目前高温BiFeO3-BaTiO3 基压电陶瓷的压电性能和温度稳定性不能兼顾的问题,尤其是高温漏电流和高温压电性能的敏感性问题,研究了三个方面的内容。首先,通过成分改性,在A位添加稀土,B位添加过渡族金属,并改变添加金属离子的方式(预合成前或者后添加,双重离子二次掺杂),研究了A位/B位元素掺杂对微观结构、物相组成及含量对介电、压电、铁电性能及高温稳定性、压电性能的温度敏感性的影响;其次,在成分改性的基础上,通过结构工程调控陶瓷的微观结构,通过成分、工艺及后续的退火处理,调控成分/结构的梯度组织及结构、芯壳结构等局部微区结构,探索了结构工程对介电、压电、铁电性能及它们的温度行为;最后,从电价、离子半径失配的角度,分析不同的补偿方式,探索缺陷及复合缺陷的形成及对电性能与高温性能演变的影响规律。结果发现,适量的稀土和过渡族元素取代,能同时提高压电性能及温度稳定性,通过调控退极化效应和热激活压电响应的平衡,可以获得具有高温低损耗及近零温度系数的低温度敏感压电响应,特别是Zn的取代可以同时进入A位与B位,引起压电性能、温度稳定性和温度敏感性三者协同提高。过渡族Mn、Co掺杂都可以显著提高绝缘性能,降低损耗,其中Mn掺杂降低漏电流的效果比Co掺杂显著,但是提高压电性能的效应低于Co掺杂。成分工程和结构工程协同调控的缺陷补偿方式,以及形成的芯-壳结构,可以有效调控高压电活性微观结构,利于畴变及极化翻转的应力、应变释放,在放大压电响应的同时,可以有效改善高温压电响应及温度敏感性。项目利用芯-壳结构和缺陷的功能效应,通过优化芯-壳结构与缺陷结构改善高温性能,有望对高温压电材料的研究提供新的方法与思路。本项目在高温压电陶瓷的性能优化与应用拓展等领域开展了一系列的工作,研究结果受到国内外同行认可,目前发表23篇SCI收录论文,12篇授权专利,获1项省部级自然科学三等奖。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
钢筋混凝土带翼缘剪力墙破坏机理研究
基于二维材料的自旋-轨道矩研究进展
服务经济时代新动能将由技术和服务共同驱动
敏感性水利工程社会稳定风险演化SD模型
声学换能器用高Tc压电陶瓷的分类制备与高温性能的微结构机理研究
基于高温压电传感器用铌酸铋钙压电陶瓷的高温导电机制、温度稳定性及抗冲击性能研究
压电换能器用钛酸铋钠基陶瓷大压电各向异性的结构本质和织构化制备新方法及机理
铌酸铋钠基压电织构陶瓷的高温压电性能及导电机制研究