The city is our home.The individuals, vehicles, houses, potable wireless devices and sensor can be used as a congnitive unit to complete a city-level calculation and communication and form an urban computing environment. Nowadays, with the ever-increasing number of the congnitive units and the emergence of diverse wireless devices, it has become challenging to still use the traditional fixed spectrum allocation strategy. In order to utilize rare spectrum resources efficiently and further exploit the performance of cognitive radio networks, cooperative technologies such as cooperative sensing and cooperative transmission can be adopted. Thus a new paradigm-cooperative cognitive radio networks has emerged. In this project proposal, we are motivated to investigate several open problems of cooperative cognitive radio networks: (1) meeting the requirement for the energy-efficient cooperative sensing application in cognitive radio networks; (2) multi-objective non-linear programming problem for cooperative sensing; (3) a relatively robust optimization model problem under the scenario where multi-channels are cooperatively sensed and used by multi-SUs; (4) a joint spectrum allocation and cooperation set partition problem. This project proposal investigates several open problems and provides theoretical optimization model and solution methods to further exploit the performance of cooperative cognitive radio networks. Our works have their academic and practical value on promoting the advancement of the researches and applications in cooperative cognitive radio networks. More and more urban users can use green wireless spectrum resources effciently, fairly and conveniently. All the people in the urban computing environment can enjoy high quality wireless communication and intelligent information services.
城市中的人﹑车﹑房、便携信息设备、传感器等元素都可作为一个认知单元协同完成一个城市级别的计算﹑通信并构成城市计算环境。近些年随着城市计算环境下的认知单元种类、规模不断扩大,无线业务需求急剧膨胀,原有无线频谱分配政策已经难以满足实际需要。为解决无线频谱资源稀缺问题,深入提升认知无线电网络的性能,可将协作感知技术、协作传输技术等协作技术应用于认知无线电网络中,构建“协作认知无线电网络”。本项目对城市计算环境下的协作认知无线电网络若干开放性问题进行研究,包括:能量高效协作感知节点选择问题;协作感知系统的多目标协作联盟构建问题;协作多通道感知问题;联合通道分配与协作通信集合划分问题。本项目的开展对于进一步提升协作认知无线电网络性能,推动协作认知无线电网络的理论研究和实用化有重要意义。使得在未来城市计算环境下的用户都能够公平、高效地使用无线频谱资源,享受到便捷、环保、高质量的通信服务和智能信息服务。
当今网络的宽带化、业务的多样化以及现有的固定频谱管理模式的局限性使无线网络面临资源日益匮乏的巨大挑战。建立在认知科学、计算机科学、信息科学与控制科学基础之上的认知无线电网络技术可通过对无线网络环境的感知和决策,实现频谱资源的有效共享与优化利用,是当前网络技术的研究热点之一。为更深入的提升认知无线电网络的性能,可将协作感知技术、协作传输技术等协作技术应用于认知无线电网络中,从而出现了“协作认知无线电网络” (Cooperative Cognitive Radio Networks,CCRN)这一新生概念。本项目针对若干协作认知无线电网络的开放性优化问题展开研究,主要的研究工作如下:.(1)对协作认知无线电网络的分类、关键技术、当前热点研究问题进行了总结,指出现有研究工作的不足,在此基础上提出若干亟待研究的开放性问题。.(2)针对能量高效协作感知问题,分别定义了两个子问题,即面向单次协作感知过程的能量最小化的节点选择问题(Energy Minimization Node Selection problem,EMNS,EMNS)和面向在线协作感知的能量高效节点选择问题(Online Energy-efficient Node Selection problem,OENS )。.(3)针对协作感知系统的多目标协作联盟构建问题,基于联盟博弈理论为其构建了一个不可转移支付的联盟构造博弈模型,在关键支付函数的设计中,采用“线性加权和”方法节点吞吐量期望值和能量消耗值两个优化目标,同时还考虑了每个联盟内错误接入概率需小于给定阀值的约束。.(4)针对协作多通道感知问题,我们为多SU对多通道进行协作感知的系统建立了一个参数齐全,相对完整的优化模型。该模型在各通道错误接入概率小于给定阀值的约束下,以最大化系统吞吐量为目标,对包括感知时间和各SU对各通道检测结果的权重系数在内的参数进行优化,属于约束非线性规划模型。为求解该模型,提出了一种启发式的顺序参数优化方法(Sequential Parameters Optimization method,SPO)。.(5)针对CCRN中多PU与多SU共存,且多个SU可利用协作中转技术与最大比例合并技术为PU提供协作传输的真实网络场景,提出了CCRN联合通道分配与协作集划分问题和解决方法。
{{i.achievement_title}}
数据更新时间:2023-05-31
跨社交网络用户对齐技术综述
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
伴有轻度认知障碍的帕金森病~(18)F-FDG PET的统计参数图分析
城市轨道交通车站火灾情况下客流疏散能力评价
基于FTA-BN模型的页岩气井口装置失效概率分析
协作认知无线电网络资源管理关键理论及技术研究
认知无线电系统中多用户协作分集理论及关键技术研究
面向智慧城市的视频边缘协同计算理论与关键技术研究
噪声不确定下基于计算智能的多跳认知无线电网络协作频谱感知优化