Metformin is recommended as the first-line agent in the management of type 2 diabetes mellitus for its main target on hepatic gluconeogenesis, but its mechanism remains only partially understood and controversial. PTG, a regulatory subunit of protein phosphatase 1, is a gene related to hepatic gluconeogenesis which was screened by our team using gene chip technology. Our previous study found that the expression of PTG was significantly increased in the liver of db/db mice. We also demonstrated that, in cultured primary liver cells of mice, cAMP significantly promoted gluconegenesis and increased the mRNA expression levels of PTG. When the expression of PTG gene was blocked by RNAi in liver cells, gluconegenesis was inhibited, while overexpression of PTG gene increased gluconegenesis. Metformin inhibited the expression of PTG gene in hepatocytes in a dose-dependent manner, but it had no significant effect on hepatic gluconegenesis in PTG overexpressed liver cells. Based on the findings mentioned above, it suggested that metformin might inhibit hepatic gluconeogenesis via reducing the activity of PTG. In the present study, we aim to comprehensively study the effects of PTG on metformin-intervented hepatic gluconeogenesis in vivo and vitro, and further clarify the molecular mechanisim of metformin regulating hepatic gluconegenesis via PTG. This study will provide strong evidence for the new role of PTG in regulating hepatic gluconeogenesis, and PTG may serve as a potential therapeutic target for the treatment of insulin resistance and type 2 diabetes.
二甲双胍是以肝脏糖异生为主要作用靶点的一线用药,但其作用机制尚不够清晰。PTG为蛋白磷酸酶1的一种调节亚基,是本课题组应用基因芯片技术筛选到的肝糖异生相关基因。前期研究发现:db/db鼠肝脏PTG表达显著增加。在原代培养的小鼠肝脏细胞,cAMP干预显著促进糖异生,同时PTG表达明显升高;将PTG基因沉默后糖异生受抑制,而过表达PTG后糖异生增多。二甲双胍则以剂量依赖方式抑制肝细胞PTG基因的表达,但其对过表达PTG的肝细胞糖异生无明显影响。以上研究表明,PTG可能介导了二甲双胍对肝脏糖异生的作用。本研究拟进一步从细胞和整体水平阐明PTG在二甲双胍干预肝脏糖异生中的作用;并从转录调控等方面入手,探明二甲双胍通过PTG调控肝脏糖异生的分子机制。该课题具有源头创新性,通过本项目的实施,有望加深人们对PTG基因功能和作用的理解,丰富肝脏糖异生的调控机制学说,对胰岛素抵抗、2型糖尿病的防治提供帮助。
二甲双胍是以肝脏糖异生为主要作用靶点的一线用药,但其作用机制尚不够清晰。PTG为蛋白磷酸酶1的一种调节亚基,是本课题组应用基因芯片技术筛选到的肝糖异生相关基因。本研究发现,在饥饿状态,PTG在C57BL/6小鼠肝脏高表达,进食后其表达显著降低。高脂喂养(HFD)小鼠、db/db糖尿病小鼠肝脏PTG表达显著增加。在饥饿、进食及胰岛素抵抗状态下,PTG表达水平与糖异生途径关键酶PEPCK、G6Pase的变化趋势一致,提示其可能参与肝脏糖异生的调控。体内外研究结果显示,二甲双胍显著抑制肝脏PTG基因与蛋白的表达。在原代培养的小鼠肝细胞以及AML-12小鼠肝细胞,cAMP干预显著促进糖异生,同时PTG表达明显升高;将PTG基因沉默后糖异生受抑制,而过表达PTG后糖异生增多,二甲双胍可以剂量依赖方式抑制PTG及PEPCK等糖异生关键基因的表达,但其对过表达PTG的肝细胞糖异生无显著影响。进一步利用HFD联合STZ诱导的2型糖尿病小鼠等动物模型,尾静脉注射PTG过表达或敲减腺病毒,分别行葡萄糖耐量试验、胰岛耐量试验及丙酮酸耐量试验。结果发现,PTG敲减后,HFD/STZ糖尿病小鼠血糖水平逐渐下降,胰岛素敏感性提高,肝糖异生功能抑制;而过表达PTG小鼠血糖增高,糖异生增强。蛋白印迹、免疫荧光结果显示,PTG敲减可显著升高AML-12小鼠肝细胞、HFD/STZ糖尿病小鼠肝脏组织叉头转录因子1(FOXO1)的磷酸化水平,而PTG过表达则可显著抑制FOXO1的磷酸化。研究发现,FOXO1抑制剂AS1842856可阻断PTG过表达对PEPCK的促进作用,而PTG敲减对PEPCK的抑制作用可被FOXO1过表达所消除。这些结果共同揭示二甲双胍可通过抑制PTG表达,促进FOXO1磷酸化,抑制糖异生关键酶PEPCK、G6Pase的表达,进而抑制肝脏糖异生。此外,研究还发现,PTG过表达HFD小鼠体重增加,肝脏脂滴增多,SREBP1、DGAT2等脂肪合成关键基因表达上升;在AML-12肝细胞,PTG过表达或敲减也可影响相关脂肪合成基因的表达。同时发现,PTG可抑制二甲双胍对AMPK磷酸化的激活,提示PTG可通过AMPK/SREBP1信号通路参与调节脂质合成与胰岛素抵抗。本研究增加了人们对PTG功能和作用的理解;拓展了对二甲双胍作用机制的认识,为抗2型糖尿病的药物研发提供实验和理论基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
Empagliflozin, a sodium glucose cotransporter-2 inhibitor, ameliorates peritoneal fibrosis via suppressing TGF-β/Smad signaling
An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function
Baicalin provides neuroprotection in traumatic brain injury mice model through Akt/Nrf2 pathway
棕榈油酸通过调控SIRT3来抑制肝脏糖异生的机制研究
Betatrophin对肝脏糖异生的影响及其机制研究
Metrnl在肝脏糖异生中的作用及机制研究
PFOS/PFOA通过抑制糖异生途径干扰肝脏中营养物质代谢的分子机制研究