Currently,highway vehicle collision accident rate remains high, but the related research is mainly focused on single-vehicle collision warning based-on ranging of adjacent vehicles, which is not a good way to avoid the chain collision. The main technical challenge of chain collision warning is precise positioning of vehicles. This challenge arises from special restrictions on highway such as lack of power supply, high vehicle speed, non-line-of-sight of the nonadjacent vehicles, low-cost requirement of massive equipment installation and maintenance, etc. In order to address this challenge, a hybrid positioning approach is proposed in this project, that is, both the relative positioning based on UWB passive RFID and the absolute positioning based on the self-differential satellite signal work collaboratively, and then the precise positioning of the vehicle on highway will be achieved.In the aspect of adapting to the highway particularity, the key elements of the proposed approach are using signal fingerprints and Kalman filters to solve the problem of non-line-of-sight, passive RFIDs to solve the energy problem, RF-Tag clusters to solve the low-cost problem and Doppler shift to solve the vehicle high speed problem. Further more, in the aspect of improving the positioning accuracy, estimating UWB Figure of Merit and setting weights of different references are employed to improve the accuracy of UWB positioning; At the same time, based on the estimated UWB positioning results, the geographical coordinates of the reference point for differential satellite positioning can be accurately deduced, and in this way the positioning precision of the DGNSS will be improved. The research results can be used for vehicle chain collision warning, Internet of Things and other areas of high-precision location-based services.
目前高速公路车辆碰撞事故发生率居高不下,但相关研究成果主要集中在基于前后距离测量的单车碰撞预警,无法避免车辆连环碰撞。车辆连环碰撞预警存在的主要技术难题是车辆的精确定位问题,这是因为高速公路存在缺少电源、车辆高速移动、不相邻车辆的非视距,以及海量设备安装维护的低成本要求等限制。为此,本课题提出了基于UWB无源RFID相对定位和基于自差分卫星的绝对定位方法,二者协同工作实现高速公路车辆的精确定位。在适应高速公路特殊性方面拟通过信号指纹、卡尔曼滤波等解决非视距问题,通过无源RFID解决电源问题,通过RF-Tag簇解决低成本问题,通过多普勒频移解决高速移动问题。在提高定位精度方面拟通过估计UWB信道品质因子、设定参考节点的权值来提高UWB定位精度;同时根据该定位结果可准确地推算出GNSS差分参考点的地理坐标,从而提高卫星定位的精度。研究成果可用于车辆连环碰撞预警、物联网及其他高精度位置服务领域。
高速公路车辆碰撞事故发生率居高不下,但相关研究成果主要集中在基于前后距离测量的单车碰撞预警,无法避免车辆连环碰撞。车辆连环碰撞预警存在的主要技术难题是车辆的精确定位问题,这是因为高速公路存在车辆高速移动、不相邻车辆的非视距等限制。为此,本课题提出了基于UWB无源RFID相对定位和基于自差分卫星的绝对定位方法,二者协同工作实现高速公路车辆的精确定位。课题研究了IEEE802.15p协议、60GHz无线通信相关的距离和位置估计、指纹测距,基于UWB定位系统的信道品质因子估计、测距安全性措施和基于5G的D2D通信的车辆测距和定位等问题。研究成果发表了与课题相关的论文29篇,其中SCI/EI论文检索25篇,申请发明专利9项、培养研究生4名、培养青年科技骨干2名、开发实现了软件平台以及车载终端,并在企业进行了推广应用,新增产值达到2.4亿元,新增利润5400万元,获得省部级科技奖励4项。研究成果可用于车辆连环碰撞预警、物联网及其他高精度位置服务领域。
{{i.achievement_title}}
数据更新时间:2023-05-31
农超对接模式中利益分配问题研究
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
低轨卫星通信信道分配策略
居住环境多维剥夺的地理识别及类型划分——以郑州主城区为例
基于细粒度词表示的命名实体识别研究
UWB多点协同定位
基于恒中心位置约束的高速公路车辆队列协同控制研究
面向室内外过渡区域的GNSS/UWB/INS协同定位模型研究
高速公路车辆群运行险态判别算法及其警示方法研究