Space mission of large-scale satellite swarm (more than 100 satellites) and its related technology is a key development direction of future space multi-satellite mission. Formation control and attitude synchronization is crucial for large-scale satellite swarm mission. The inter-satellite distance for large-scale satellite swarm may reach a few hundred kilometers, even a thousand kilometers. The inter-satellite data transmission rate for such long range is very limited. Furthermore, data transmission rate for micro/nana satellite is limited due to its limited weight. Since orbit parameters for large-scale satellite swarm are quite different, the inter-satellite distances vary rapidly and in a wide range. As a result, the inter-satellite communication topology is complicated and time-varying. Meanwhile, the probability of collision is significant for large-scale satellite swarm. These factors introduce big challenge for formation control and attitude synchronization of large-scale satellite swarm. This project will investigate trajectory optimization methods for formation establishment, formation reconfiguration, formation transition under the constraints of fuel optimization, fuel equilibrium and collision avoidance; study fuel-efficient decentralized formation keeping methods based on local interactions under the constraints of time-varying inter-satellite communication topology, limited inter-satellite communication, and collision avoidance; propose attitude synchronization control methods in the presence of limited inter-satellite communication, time-varying inter-satellite communication topology, inertia matrix uncertainties and disturbances.
超过百颗星的大规模微纳星群航天任务和相关技术,是未来空间多星任务的重点发展方向。构形控制与姿态协同对于大规模星群航天任务至关重要。对于大规模微纳星群,其星间距离可能达到数百公里甚至上千公里,远距离星间通信其通信速率大大降低。且微纳卫星由于重量限制,其通信带宽有限。另一方面,星群轨道相差较大,星间距离变化较大较快,星间通信时有时无,因此其星间通信拓扑网络是复杂动态时变的。同时,大规模星群卫星数量众多,星间碰撞风险较大。这些因素给大规模星群的构形控制和姿态协同提出了很大的挑战。本项目针对大规模星群主要研究燃料优化、燃料均衡、碰撞规避等约束下的构形初始化、重构及变迁轨迹优化;研究时变通信拓扑结构、有限星间通信和碰撞规避等约束下,基于局部信息交互的燃料有效分布式构形维持控制方法;研究有限星间通信能力和时变通信拓扑结构下的航天器姿态协同控制问题,同时抑制干扰力矩和转动惯量不确定对姿态协同的影响。
超过百颗星的大规模微纳星群航天任务和相关技术,是未来空间多星任务的重点发展方向。构形控制与姿态协同对于大规模星群航天任务至关重要。对于大规模微纳星群,其星间距离可能达到数百公里甚至上千公里,远距离星间通信其通信速率大大降低。且微纳卫星由于重量限制,其通信带宽有限。另一方面,星群轨道相差较大,星间距离变化较大较快,星间通信时有时无,因此其星间通信拓扑网络是复杂动态时变的。同时,大规模星群卫星数量众多,星间碰撞风险较大。这些因素给大规模星群的构形控制和姿态协同提出了很大的挑战。本项目针对大规模星群主要研究了燃料优化、燃料均衡、碰撞规避等约束下的构形初始化、重构及变迁轨迹优化;提出了时变通信拓扑结构、有限星间通信和碰撞规避等约束下,基于局部信息交互的燃料有效分布式构形维持控制方法;探索了有限星间通信能力和时变通信拓扑结构下的航天器姿态协同控制问题,同时抑制干扰力矩和转动惯量不确定对姿态协同的影响。
{{i.achievement_title}}
数据更新时间:2023-05-31
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于协同表示的图嵌入鉴别分析在人脸识别中的应用
一种改进的多目标正余弦优化算法
多空间交互协同过滤推荐
基于行为的航天器集群构形控制方法与影响机制研究
多航天器有限时间姿态协同跟踪与合围控制研究
事件通信方式下多航天器姿态协同控制研究
基于控制力共享的集群航天器构形动态特性及其协调控制方法