Mechanochromic materials responding to external mechanical stimuli have a wide range of promising applications in some areas such as sensors and recording devices. In addition, long-lived room-temperature phosphorescence materials also have potential applied values in high density data recording, high contrast background-independent imaging, anti-counterfeiting, and related fields. However, to date, the number of metal complexes with mechanochromism property is quite limited. Meanwhile, the luminescence lifetime of almost all mechanochromic metal complexes is less than 1 millisecond. Over the last two decades, gold(I) chemistry has always been a popular research hotspot owing to the existence of fascinating aurophilic Au-Au interactions between gold centers. In this research proposal, multiple series of new gold(I) complexes with long-lived (dozens of millisecond level, hundreds of millisecond level, and even second level) room-temperature phosphorescence and high-contrast mechanochromism characteristics will be obtained according to our novel structural design strategy, which combines the rotatable carbazole units and gold(I)-containing skeletons. These target molecules mainly include: 1) carbazole-containing gold(I) complexes with the substituents possessing different electronic effect, 2) gold(I) complexes containing a single carbazole unit and the ligands possessing different electronic effect, 3) gold(I) complexes containing multiple carbazole moieties and the ligands possessing different electronic effect. The influence of a variety of factors, such as substituting groups with different electronic effect, various types of gold(I) ligands, gold(I) ligands with different electronic effect, the number of carbazole units, the number of gold(I) units and alkyl chains of different lengths, on the AIE, mechanochromism and long-lived room-temperature phosphorescence properties of these target gold(I) complexes will be systematically investigated, and the relationship between molecular structures and these interesting properties will be analyzed and summarized. Furthermore, the mechanisms for the related properties of these target coordination compounds will be also systematically studied via using a variety of analytical methods, and the corresponding mechanisms will be proposed.
力致变色材料在传感器和记录设备等领域具有广阔的应用前景,长寿命室温磷光材料在高密度数据记录、高对比度背景独立成像和防伪等领域也具有潜在的应用价值。迄今为止,力致变色金属配合物的数量十分有限,并且其发光寿命几乎都小于1毫秒。一价金化学在过去二十多年来一直是备受关注的研究热点。本项目采用新的设计思路,拟将可旋转的咔唑单元和一价金骨架有机结合,制备得到多个系列同时具有长寿命室温磷光(几十毫秒级、几百毫秒级、甚至秒级)和高对比度力致变色性质的新型一价金配合物,主要包括:含不同电子效应取代基和咔唑基团的一价金配合物;含单咔唑基团和不同电子效应配体的一价金配合物;含多咔唑基团和不同电子效应配体的一价金配合物。系统研究不同电子效应的取代基、不同类型的一价金配体、不同电子效应的一价金配体、咔唑单元的个数、一价金单元的个数以及烷基链的长度等因素对其性质的影响,并采用多种分析测试手段揭示出相关性质的机理。
对外部机械力刺激有响应的力致变色材料由于在传感器和记录设备等领域具有潜在的实用性,从而使得与其相关的研究被认为是非常重要的。明亮的固态发光和机械力刺激前后明显的颜色对比对于力致变色材料的有效应用来说是两个非常重要的因素。因此,具有聚集诱导发光性质的发光分子是高性能力致变色材料的重要候选者。此外,长寿命室温磷光材料由于在高密度数据记录、高对比度背景独立成像和防伪等领域具有潜在的应用价值而引起了研究人员的广泛关注。迄今为止,力致变色金属配合物的数量十分有限,并且其发光寿命几乎都小于1毫秒。含一价金单元的分子由于可以形成分子内或分子间的金金相互作用从而有望显示出许多有趣的光物理现象。本项目采用理性的设计思路,制备得到了多个系列同时具有长寿命室温磷光和高对比度力致变色性质的新型一价金配合物,主要包括:含不同电子效应取代基和咔唑基团的一价金配合物;含单咔唑基团和不同电子效应配体的一价金配合物;含多咔唑基团和不同电子效应配体的一价金配合物。系统研究不同电子效应的取代基、不同类型的一价金配体、不同电子效应的一价金配体、咔唑单元的个数、一价金单元的个数以及烷基链的长度等因素对其性质的影响,并采用多种分析测试手段揭示出相关性质的机理。此外,我们还制备出了数十种具有AIE和高对比度力致变色性质的有机荧光染料和数个具有高度聚集态发光性质和刺激响应性质的超分子二价铂金属环化合物。项目执行期间,在Proc. Natl. Acad. Sci. U. S. A.,Org. Lett.,Organometallics,Mater. Chem. Front.,Sci. China Chem.,Dyes Pigm.,RSC Adv.,ACS Omega,Tetrahedron,Tetrahedron Lett.,Spectrochim. Acta A等杂志上共发表标注该项目基金号的SCI论文22篇,获得授权发明专利3项。
{{i.achievement_title}}
数据更新时间:2023-05-31
祁连山天涝池流域不同植被群落枯落物持水能力及时间动态变化
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
基于细粒度词表示的命名实体识别研究
五轴联动机床几何误差一次装卡测量方法
物联网中区块链技术的应用与挑战
新型电致磷光铱配合物的设计合成和性能研究
力致变色树状分子及聚合物的设计、合成与性能
室温磷光型铜、金配合物的合成与敏化镧系稀土发光研究
新型磷光型发光配合物的设计、合成与性能研究