Hot-carrier-driven photocatalytic CO2 reduction to value-added chemicals represents a promising means to store abundant and clean solar energy in carbon bond. Its gas/solid reaction is compatible with fixed-bed reactor systems whose productivity potentially can meet the requirement of industrial application. In this project, we plan to build a photocatalytic reaction system consisting of plasmon-induced antenna-reactor units in an ordered structure over a large scale on the high-surface-area and visible-light-transparent substrates. Through rational design of the antenna-reactor unit (including the size, shape, geometry of metal nanoparticle and the energy band positions of metal nanoparticle, catalyst and substrate) and fine-tuning of the spatial arrangement of antenna-reactor units in ordered structures, we expect to realize a non-linear increase of key factors (including electromagnetic field, hot carriers, temperature, concentrations of reactants) in confined narrow surface areas, so as to dramatically increase the reaction activity of CO2 hydrogenation to C1 or important C2+ products with high selectivity and energy conversion efficiency. With the optimization of the solid-gas reaction system, we further expect improvement in productivity from CO2 to chemicals. We will conduct computational and experimental studies including FDTD/DFT calculations, in situ XAS, Raman, infrared spectroscopy characterizations to 1) understand the mechanism in the photocatalytic CO2 hydrogenation, 2) quantify the thermal and non-thermal contributions, 3) identify roles of material, reactor unit and ordered structure in realizing gap plasmons for non-linearly enhanced local electromagnetic field, 4) reveal roles of local coordination environment. chemical states and electronic structures on catalyst surface for high activity CO2-to-C1 and CO2-to-C2+ conversion. Our project is expected to offer new mechanistic insights in photocatalytic CO2 hydrogenation and may provide a new “paradigm” in material and structure research that deepens our knowledge on the hot-carrier-driven photocatalytic CO2 hydrogenation to valuable chemicals toward practical application.
热载流子光催化还原二氧化碳(CO2)产高附加值化学品,可将太阳能直接存储于碳化学键中,是实现人工碳循环有效途径。其气固相反应体系更适用于固定床反应器,有望达工业级产率,具有重大的科学意义和应用前景。本项目拟大面积合成“等离子体光催化功能基元+序构结构”,以能带匹配、尺寸可控的金属纳米颗粒/催化剂复合结构为功能基元,构筑其短程有序结构,实现局部小空间内表面电磁场、热电子、热、反应物浓度等关键反应要素的非线性增强,从本质上改变化学反应进程,大幅提升CO2加H2到C1产物性能,突破性合成C2+产物,提高产率。其中实验部分的关键结果是实现CO2加H2到重要单一产物的高选择性和高(光-化学能)能量转化率,并通过进一步优化气固反应器实现CO2加H2到化学品的高转化率。基于实验上获得的高性能,结合FDTD/DFT理论计算、原位XAS、拉曼、红外等表征,深入研究材料功能基元+序构结构对高性能反应的核心机理。包括:阐明光→电、热→化学能转换机理,从物理基础上探究热电子产生效率与材料、功能基元、序构等多方面因素的关系,理解等离子激元与催化反应的关联,量化等离子激元热电子的热与非热效应对整体催化反应贡献,揭示实现非线性增强电磁场的关键因素及表面原子配位环境、电子态对高活性、高选择性的核心作用。本项目将加深对太阳能驱动热载流子光催化CO2资源化的认识,为未来实用化提供依据。
等离子体光催化还原二氧化碳(CO2)产化学品,可将太阳能直接存储于化学键中,是实现清洁能源驱动下“人工碳循环“的有效途径之一。其中,开发高效的等离子体单元与催化剂单元的序构结构,用于气固相反应体系,有望达工业级产率和选择性,具有重要的科学意义和应用前景。本项目按照项目申请书要求执行,以能带匹配、尺寸可控的金属纳米颗粒/催化剂复合结构为功能基元,聚焦构建“等离子体光催化功能基元+序构结构”,并验证短程有序结构对反应性能的影响。通过局部小空间内表面电磁场、热电子、热、反应物浓度等关键反应要素的非线性增强,从本质上提升化学反应进程,大幅提升CO2加H2到C1产物性能,并合成C2+产物。通过FDTD/DFT理论计算、实验检测、原位表征等手段,尝试阐明光→电、热→化学能转换机理,量化光对化学反应效应贡献,揭示实现非线性增强电磁场的关键因素及表面原子配位环境、电子态对高活性、高选择性的核心作用。本项目支持下,发表高水平学术论文多篇,包括申请人第一作者Nature论文一篇,第一责任单位通讯作者Nature Communicatioins一篇和Angewandte Chemie International Edition一篇等,通过本项目加深了对太阳能利用与等离子光催化CO2资源化的认识,为未来实用化提供基础支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
监管的非对称性、盈余管理模式选择与证监会执法效率?
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
基于二维材料的自旋-轨道矩研究进展
高效光催化材料的晶面构筑及其还原 CO2 的构效机理研究
热催化—光催化直接耦合实现CO2高效清洁燃料化新过程及其微观协同机制研究
太阳能光催化分解水制氢高效可见光催化剂研究
新型高效无机复合光催化剂的制备及光催化还原CO2反应过程研究