The slow anaerobic digestion process of waste activated sludge is a crucial barrier to the energy recovery of wastewater treatment. The electrochemical assistant-anaerobic digestion promisingly breaks the rate limitation of anaerobic digestion. However, little known about the interaction of electrode and biofilm associated with electron transfer cascades constrains the development of this technology. This research will utilise the core interface region between electrode and biofilm to tackle the interaction pattern and construct the thermodynamic basis of electron transfer via probing the distribution of critical factors that influence electron transfer, and confirming the electron transfer carriers to predict the advantages of various electron shuttles in sequence. This research will focus on quantitatively analyzing the ability of the cathodic biofilm to transport electrons, and building directed microbial network related to the community succession to unravel the principle of sharing electrons and cooperative phenotype within the biofilm. The research outcomes of this project will build the fundamental theory of directed acclimation of biofilm and addressed regulation of product synthesis, and provide the scientific basis for implementing the energy-neutral wastewater treatment plant, and achieve the precision engineered energy transform in electrochemical assistant-anaerobic digestion. Therefore, this project has essential scientific meanings and engineering values.
剩余污泥厌氧消化速率慢是限制污水厂能量回收的关键,电化学辅助厌氧消化技术能够显著提高污泥厌氧消化速率,然而对阴极-生物膜体系中电子梯级传递过程的认知不足限制了该技术进一步发展。因此本研究以核心的阴极-生物膜交互体系为研究对象,深度解析电极微纳界面影响电子传递的关键物质,确定阴极-生物膜界面电子传递介体,建立基于多种电子介体的交互界面热力学模型,预测电子传递路径的能量优势顺序;解析生物膜电子转移能力,基于群落演替特性建立定向微生物网络,揭示核心功能微生物网络的电子共享机制及合作表型;最终探明电子从交互界面到生物膜梯级传递过程的主要载体及作用路径。旨在为建立基于电子传递理论的生物膜群落定向驯化和合成产品定向调控提供理论基础,精准调控电化学辅助厌氧消化技术中能源转化速率及效率,为实现污水处理厂能量中和的目标提供科学依据和指导。研究思路和方法具有重要的科学意义和工程实用价值。
剩余污泥厌氧消化速率慢是限制污水厂能量回收的关键,电化学辅助厌氧消化技术能够显著提高污泥厌氧消化速率,然而对阴极-生物膜体系中电子梯级传递过程的认知不足限制了该技术进一步发展。本研究以核心的阴极-生物膜交互界面为研究对象,深度解析了电极微纳界面影响电子传递的关键物质,确定阴极-生物膜界面电子传递介体,建立基于多种电子介体的交互界面热力学模型,预测了电子传递路径的能量优势顺序;基于群落演替特性建立定向微生物网络,揭示核心功能微生物网络的电子共享机制及合作表型;最终探明电子从交互界面到生物膜梯级传递过程的主要载体及作用路径。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应
生物膜的电子传递过程的模型研究
基于可取址微电极阵列的电活性生物膜电信号通讯和胞外电子传递的交互机理研究
生物膜界面的若干材料物理问题
调控阴极生物膜促进微生物燃料电池产电的机制研究