Plant polysaccharide gum can be used in many fields because of its unique rheological properties, while the modified polysaccharide gum with stable performance and unique features has broad application prospects. The modified plant polysaccharide gum has been partly reported, but the modification process is complex, the reaction efficiency is low, and the modified cost is high because of the polysaccharide gum defects. The innovative micro-water-solid phase method for modification of polysaccharide gum has been given in this project based on the polysaccharide gum absorbent highly expanded features. Through this research project, a modified reaction system of the plant polysaccharide gum micro-water-solid phase method will be created. The polysaccharide gum micro water imbibing will be coupled with the modification reaction, and the polysaccharide gum reaction surface area will be enhanced. So the process of modification could be simplified with reduction of solvent consumption. The chemical reaction kinetics of the polysaccharide gum modification via micro-water-solid phase method will be built. The micro water imbibition rate and micro-textural changes of polysaccharide gum endosperm will be also studied in this project. The distribution of the enzyme protein with water penetration synchronization process as well as the enzyme reaction tracer positioning will be determined with fluorescent labeling technology, and the structure of modified products should be characterized. The reaction mechanism of micro-water-solid phase method for modification polysaccharide gum could be stated. The topics of this project could be achieved great significance of plant polysaccharide gum high value utilization and academic level enhancement.
植物多糖胶因其独油的流变性质可用于多个领域,改性多糖胶因性能稳定和独特功能具有更广阔的应用前景。关于植物多糖胶的改性已有部分研究报道,但由于多糖胶自身性质特点,导致改性过程复杂,反应效率低,改性成本高等不足。本项目基于多糖胶吸水快速高倍膨胀特点,创新性提出微水固相法多糖胶改性新方法。通过本项目研究,创建植物多糖胶微水固相法改性反应体系,耦合多糖胶微水吸胀与改性反应两个过程,扩大多糖胶反应比表面积,简化改性过程,降低溶剂消耗,提高反应效率,构建多糖胶微水固相化学改法反应动力学。通过研究多糖胶胚乳的微水吸胀速率及微观质构变化,采用荧光标记技术对酶蛋白随水同步渗透过程以及反应过程中酶分布进行示踪定位,以及对改性产物的结构表征,阐明微水固相法多糖胶改性的反应机理。本项目选题具有创新意义,研究成果将对我国植物多糖胶资源高值化利用以及丰富多糖胶方面学术成果具有重要意义。
植物多糖胶因其独特的流变性质可用于多个领域,改性多糖胶因性能稳定和独特功能具有更广阔的应用前景。关于植物多糖胶的改性已有部分研究报道,但由于多糖胶自身的缺陷,导致改性过程复杂,反应效率低,改性成本高等不足。.本项目基于多糖胶吸水快速高倍膨胀特点,创新性提出微水固相法多糖胶改性新方法。项目创建了植物多糖胶微水固相法改性反应体系,耦合多糖胶微水吸胀与改性反应两个过程,扩大多糖胶反应比表面积,简化改性过程,降低溶剂消耗,提高反应效率,构建了多糖胶微水固相化学改法反应动力学。项目研究了多糖胶胚乳的微水吸胀速率及微观质构变化,采用荧光标记技术对酶蛋白随水同步渗透过程以及反应过程中酶分布进行示踪定位,以及对改性产物的结构表征,阐明了微水固相法多糖胶改性的反应机理。通过分级加入乙醇/异丙醇可逐步沉降瓜尔多糖胶(GG),皂荚多糖胶(GSG)和胡芦巴多糖胶(FG)。β-甘露聚糖酶降解皂荚多糖胶,加酶量在3000-4000U/(g胚乳)范围内,加水量为0.9倍胚乳片质量,在40h反应时间后可得到最大低聚糖含量,为18.17%。皂荚多糖胶(G)用作亲水性凝胶骨架片的缓释材料,骨架材料含量显著影响药物的释放,在24 h时G5、G10和G15骨架片的体外累积药物释放量分别为98.8 %、90.2 %和83.4 %。采用微水固相法氧化改性皂荚多糖胶(GSG),以H2O2为氧化剂,制备氧化皂荚多糖胶。随着氧化试剂H2O2浓度的增大,氧化皂荚多糖胶的取代度和多分散性呈增加趋势,特性粘度和相对分子质量呈下降趋势。皂荚多糖胶20g,30%(w/w) H2O2 18g,反应时间1h,反应温度65℃,在上述较佳反应条件下,取代度达到1.22。.项目发表论文12篇,其中7篇被SCI收录,培养毕业研究生3名,申请发明专利6件,其中4件发明专利获得授权,编写专著2部,制定国家标准和林业行业标准。本项目选题具有创新意义,项目研究成果对我国植物多糖胶资源高值化利用以及丰富多糖胶方面学术成果具有重要意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
钢筋混凝土带翼缘剪力墙破坏机理研究
木本多糖胶精细结构及其酶法修饰机理研究
微波辐射下植物细胞的改性及其强化固液浸取过程的机理
水热法高强α半水脱硫石膏制备及其改性研究
发酵法生产结冷胶多糖结构动力学研究