Light-weight and high-efficiency microwave absorbers with broad bandwidth at elevated temperature, is a long sought-after goal of modern military science, significantly directing civilian high-tech fields of electromagnetic pollution and protection, information security and electronic countermeasure, and microwave imaging device. Our project aims at new methods of constructing magnetic graphene heterostructure, as well as the growth mechanism, which endows graphene with excellent electromagnetic properties and microwave attenuation ability at elevated temperature. Based on component synergism, interfacial effect and atomic-molecular layer deposition, our project will open a new way for tailoring magnetic graphene heterostructure precisely, demonstrate multiple microwave response mechanism of multi-relaxation, multi-resonance, conductive network and eddy current, and thereby establishes a new strategy for tuning the electromagnetic properties at elevated temperature. The expected results are beneficial to solve the general science issues of microwave absorbers at elevated temperature, providing scientific basis for developing new types as well as supporting the stealth science and technology of our country. Meanwhile, our results also promote innovation of technology of microwave device, electromagnetic shielding, information security, electromagnetic pollution and disease prevention. More importantly, our project has outstanding features of interdisciplinary combination and integrated innovation, in favor of formation of new academic views.
轻质高效和高温宽频电磁波吸收材料是现代军事科学长期追求的目标,同时也是电磁污染防护、信息安全和微波成像器件等民用高科技领域重要发展方向。本项目旨在探索原子分子层沉积构筑磁性石墨烯的新方法,可控制作磁性石墨烯异质结构,揭示异质结构生长机理,赋予磁性石墨烯优异的高温电磁特性和微波吸收性能。基于组分协同和界面效应及原子分子层沉积技术,精准剪裁磁性石墨烯异质结构,阐明弛豫、磁共振、电导网络和磁涡流等多重微波响应行为规律和物理本质,建立磁性石墨烯异质结构高温电磁特性的调控策略。本项目预期成果有益于解决磁性石墨烯高温微波响应的共性科学问题,可以为新型吸波材料研发提供科学依据,支撑隐身科学技术发展。同时,本项研究有益于微波成像、微波器件、信息安全与电子对抗、电磁污染与电磁屏蔽等领域科技创新。本项目还具有突出的理论、方法和技术集成创新的实质性,有利于形成交叉创新的学术观点和学术思想,促进多学科发展。
轻质高效和高温宽频电磁波吸收材料是现代军事科学长期追求的目标,同时也是电磁污染防护、信息安全和微波成像器件等民用高科技领域重要发展方向。本项研究成果提出了构筑磁性石墨烯的多种新方法,可控制作了多种磁性石墨烯,揭示了这类二维异质结构生长机理,赋予了其优异的高温电磁特性和微波吸收性能与电磁屏蔽效能。基于组分协同和界面效应及原子分子层沉积技术,剪裁了磁性石墨烯异质结构,阐明了弛豫、磁共振、电导网络和磁涡流等多重微波响应行为和规律及其物理本质,建立了磁性石墨烯异质结构高温电磁特性的调控策略。本项研究成果解决了磁性石墨烯高温微波响应的关键科学问题,为先进电磁功能材料研发提供了科学依据。本项研究成果可以持续地支撑隐身科学技术和电磁屏蔽技术发展。同时,本项研究成果还有益于微波成像、微波器件、信息安全与电子对抗、电磁污染与电磁屏蔽等领域的诸多技术创新。
{{i.achievement_title}}
数据更新时间:2023-05-31
长链烯酮的组合特征及其对盐度和母源种属指示意义的研究进展
简化的滤波器查找表与神经网络联合预失真方法
压电驱动微型精密夹持机构设计与实验研究
肝脏多b值扩散心率因素的评价
基于贝叶斯统计模型的金属缺陷电磁成像方法研究
非互易石墨烯电磁特性机理研究
石墨烯等离激元分子可调谐电磁性质的研究
石墨烯的高频电磁特性及其微波近场响应的研究
石墨烯微波/毫米波电磁特性及其表征方法研究