The design and fabrication of highly efficient heterostructured semiconductor photocatalysts for solar fuels production is one of the frontier and hot research areas of photocatalysis in recent years. Traditional type II heterostructure can promote the spatial separation of photoexcited electrons and holes, however, simultaneously reducing their redox ability. The artificial solution Z-scheme photocatalytic system is usually unstable and not suitable for the gaseous phase reaction such as photocatalytic CO2 reduction. Therefore, in this project we proposed an innovative study, to design and prepare all-solid-state Z-scheme photocatalysts by coupling the high-conduction band semiconductor, g-C3N4, with the low-valance band and narrow-bandgap semiconductor such as BiVO4, Bi2WO6, or semiconductor quantum dots such as CdS and CdSe quantum dots. In this project, the controlled nanostructure design, interface engineering of g-C3N4-based all-solid-state Z-scheme photocatalysts will be achieved. The inherent relationship between the composite controlling, nanostructure tuning, interface engineering of the Z-scheme photocatalysts and the photocatalytic properties for hydrogen production and CO2 reduction will be revealed. The interface charge transfer mechanism and photocatalytic mechanism of g-C3N4-based all-solid-state Z-scheme photocatalysts will be clarified. The photocatalytic systems composed of the Z-scheme photocatalysts and non-noble-metal cocatalysts will also be investigated. The aim of this project is to develop highly efficient and stable photocatalysts with both strong visible-light absorption ability and strong redox ability for solar fuels production.
高效半导体异质结光催化材料的设计开发是近年来光催化领域的研究前沿和热点。传统II型异质结光催化材料虽然实现了光生电子和空穴的空间分离,却削弱了它们的氧化还原能力。而模仿大自然光合作用的人工液相Z型光催化体系只适用于溶液体系,无法应用于气相体系的光催化还原二氧化碳的反应中。因此,本项目提出设计和制备基于导带较高的半导体g-C3N4,和价带较低的窄带隙半导体BiVO4、Bi2WO6等,以及CdS、CdSe等半导体量子点的全固态Z型光催化剂,研究Z型光催化剂的微结构和界面调控方法,研究复合光催化剂的组分、结构和界面调控与光催化制氢和还原二氧化碳性能之间的构效关系,阐明Z型光催化剂的界面电荷转移机制和光催化反应机理,构建高效的g-C3N4基全固态Z型光催化剂和非贵金属助催化剂组成的太阳燃料光催化体系,从而制备兼具高可见光利用率和强氧化还原能力,高活性、高稳定性的太阳燃料光催化材料。
项目执行期间通过结构调控和界面调控等策略探索了g-C3N4、Bi2WO6、CdS、等半导体光催化材料的可控制备和异质结构建,研究了所制备材料的光催化分解水产氢性能,并进一步研究了其用于温室气体二氧化碳光催化加氢生产甲烷甲醇等碳氢燃料的性能,探讨了以g-C3N4等二维材料为基础的全固态S型异质结材料的光催化机理,揭示了所研究全固态S型异质结材料的组分、结构和界面相互作用与光催化产氢以及二氧化碳加氢还原性能之间的内在联系。多篇研究论文发表在多种国内外权威刊物上,如:Adv. Mater.、Angew. Chem. Int. Ed.、Joule、 Adv. Funct. Mater.、ACS Nano、Chinese J. Catal.等,发表SCI收录论文23篇,其中ESI高被引论文6篇、ESI热点论文3篇,发表论文被SCI引文1600余次,获得授权发明专利2项,另申请国内发明专利2项,项目执行期间毕业研究生9人,另有在读博士研究生3人,在读硕士研究生7人。建立了较为广泛的国际学术交流与合作关系。项目负责人曹少文2018-2021年连续入选科睿唯安“全球高被引科学家”榜单;2019年获国家自然科学基金优秀青年科学基金资助;项目期间被聘为《催化学报》、《中国科学.材料》、《InfoMat》和《Transactions of Tianjin University》青年编委,中国感光学会青年理事。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于国产化替代环境下高校计算机教学的研究
中温固体氧化物燃料电池复合阴极材料LaBiMn_2O_6-Sm_(0.2)Ce_(0.8)O_(1.9)的制备与电化学性质
复杂系统科学研究进展
黄土丘陵沟壑区不同土地利用方式下小流域侵蚀产沙特征
石墨烯基TiO2 复合材料的表征及其可见光催化活性研究
高效全固态Z型光催化体系的构建与机理研究
二维C3N4基S型异质结产氢光催化剂的构建与性能增强机理
全固态Z型异质结耦合过硫酸盐吸附-光催化氧化去除水中微量抗生素的机制研究
基于二维纳米异质结光催化陷阱的构建及催化增强机制研究