The large-scale epidemic of human infectious diseases has become one of the major worldwide public safety issues. In the case of an epidemic outbreak, if emergency management agencies are unable to timely develop effective control measures and containment strategies due to the lack of scientific knowledge on its pathogenesis, propagation mechanism, and the evolution of crowd opinion during the transmission process, the consequences would be very serious, such as causing extensive morbidity and mortality, and even crowd incidents that endanger the social stability will be triggered. This project will focus on studying the influence of crowd opinion and individual behavior on the propagation process for a class of directly transmitted infectious diseases of humans, such as SARS and H1N1 influenza. The specific research contents include: the generation algorithm of the dynamic social contact network based on individuals' social attributes and daily behaviors to describe the population structure of our country; the mechanism of individual's behavioral decision-making and the dynamics modeling of crowd opinion evolution during the spreading process of infectious diseases; integration of the above research results into an individual-based simulation system for large-scale epidemic spreading, and developing effective intervention strategies for crowd opinion and behaviors to prevent and control the spread of infectious diseases. The aim of this study is to provide scientific support for improving China's public security capabilities, maintaining social stability and unity, and enhancing our capabilities of emergency management for future large-scale epidemics.
传染病的大规模流行,已经成为世界性的重大公共安全问题。在针对传染病传播的应急管理过程中,如果缺乏对其发病机理、传播规律和以及传染病环境下群体观念的演化机理的科学认识,并据此制定及时有效的防治措施,后果会非常严重,造成大量人员伤亡,甚至引发群体性社会安全事件,危及社会稳定。本课题针对一类通过个体间物理接触直接传播的传染病(如SARS、流感),重点关注传染病大规模流行环境下的群体观念演化和个体行为决策机制对传染病传播的影响;具体研究内容包括:能够反映我国人群结构特征的、考虑个体的社会属性和个体日常出行的动态社会接触网络生成算法;个体在传染病环境下的行为决策模式和群体观念演化动力学模型;基于个体模拟的大规模传染病流行模拟仿真平台;以及群体观念演化的干预策略及其定量评估方法。本项目旨在为提高我国公共安全保障能力,维护社会安定团结,增强我国应对大规模传染病流行的应急管理水平提供科学支撑。
传染病的大规模流行,已经成为世界性的重大公共安全问题。在针对传染病传播的应急管理过程中,如果缺乏对其发病机理、传播规律以及传染病环境下群体观念演化机理的科学认识,并据此制定及时有效的防治措施,后果会非常严重,造成大量人员伤亡,甚至引发群体性社会安全事件,危及社会稳定。本课题正式在这样的大背景下,以流感大流行为切入点,展开了传染病动力学建模的研究。取得的研究成果包括:能反映我国人群的结构特征的动态社会接触网络模型、舆情与疫情耦合演化的动力学模型;城市地铁人群空间移动规律;基于个体模拟的大规模传染病流行模拟仿真平台;以及群体观念演化的干预策略及其定量评估方法等。本项目研究成果有助于为政府应对未来的潜在的大规模传染病流行的预防控制提供科学支撑,提高我国政府应对大规模传染病的应急管理水平。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
跨社交网络用户对齐技术综述
黄河流域水资源利用时空演变特征及驱动要素
自然灾难地居民风险知觉与旅游支持度的关系研究——以汶川大地震重灾区北川和都江堰为例
城市轨道交通车站火灾情况下客流疏散能力评价
复杂公共环境下群体行为尺度自适应建模与特定异常行为识别算法研究
基于环境与行为建模的传染病城市时空传播机理研究
基于人类行为的复杂网络传染病动力学建模与分析
情绪驱动的网络群体行为演化机理与政府引导策略研究