For traditional Hall thruster, neutral gas ionization and ion acceleration process are strongly coupled, so that when discharging with high-voltage and high-specific impulse, too high temperature of electron will result in conduction of additional electrons due to occurrence of bivalent ionization, causing the problem in low current utilization, low efficiency and poor performance. . We put forward that double-peak magnetic field and intermediate electrode should be adopted to realize decoupling of neutral gas ionization and ion acceleration process, so as to realize the double stage discharge for ionization and accelerated separation. Screening and transport organization of electrons with different energy levels (from accelerating stage to ionization stage) can be realized via double-peak distribution of axial magnetic field, distribution of 2D magnetic field at intermediate electrode position and matching of intermediate electrode; i.e. high energy electron is absorbed by intermediate electrode; low energy electron meeting the requirements for ionization threshold of neutral atom enters into ionization zone, realizing stable and sufficient ionization. Meanwhile, develop the transport process of ions from ionization stage to accelerating stage, finally realizing decoupling of ionization and acceleration process. This will effectively reduce the temperature of electrons in ionization zone under high-specific impulse discharge condition, so as to avoid bivalent ionization in ionization zone and realize high-performance discharge. . A feasible technical way for control over complete decoupling of ionization and acceleration can be put forward during the study, forming the design method for double-stage high-specific impulse Hall thruster with double-peak magnetic field and long service life that can be used for engineering practice.
传统霍尔推力器中性气体电离及离子加速过程强烈耦合在一起,导致在高电压高比冲放电时,电子温度过高发生二价电离产生了额外电子参与传导,致使电流利用率低、效率低、性能差。. 我们提出采用双峰磁场和中间电极的方式实现中性气体电离和离子加速过程的解耦,进而实现电离和加速分离的双级放电。通过轴向磁场双峰分布、中间电极处的二维磁场分布与中间电极的匹配,实现加速级到电离级不同能量电子的筛选及其输运组织,即:高能电子被中间电极吸收,满足中性原子电离阈值的低能电子进入电离区,建立稳定充分的电离。同时开展离子在电离级到加速级的输运过程,最终实现电离与加速过程的解耦,有效降低高比冲放电条件下的电离区电子温度,避免在电离区发生二价电离,进而实现高性能放电。. 通过本项目研究,可提出一种电离和加速完全解耦调控的可行技术途径,形成可用于工程实践的双峰磁场双级长寿命高比冲霍尔推力器的设计方法。
传统霍尔推力器中性气体电离及离子加速过程强烈耦合在一起,导致在高电压高比冲放电时,电子温度过高发生二价电离产生了额外电子参与传导,致使电流利用率低、效率低、性能差。.我们提出采用双峰磁场和中间电极的方式实现中性气体电离和离子加速过程的解耦,进而实现电离和加速分离的双级放电。通过轴向磁场双峰分布、中间电极处的二维磁场分布与中间电极的匹配,实现加速级到电离级不同能量电子的筛选及其输运组织,即:高能电子被中间电极吸收,满足中性原子电离阈值的低能电子进入电离区,建立稳定充分的电离。同时开展离子在电离级到加速级的输运过程,最终实现电离与加速过程的解耦,有效降低高比冲放电条件下的电离区电子温度,避免在电离区发生二价电离,进而实现高性能放电。综合上述研究,本项目提出了一种电离和加速完全解耦调控的可行技术途径,形成了可用于工程实践的双峰磁场双级长寿命高比冲霍尔推力器的设计方法。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
适用于带中段并联电抗器的电缆线路的参数识别纵联保护新原理
变推力变比冲霍尔电推进关键基础问题研究
大高径比霍尔推力器壁面效应诱导的径向电场研究
霍尔推力器等离子体束流电磁控制机理研究
霍尔推力器高电压下放电模式转变机理研究