Grid integration of large scale electric vehicles are confronted with multiple stochastic factors, including uncertainties of electric vehicles at time and space, uncontrollable renewable power such as the output of wind turbine and photovoltaic panels, as well as the random fault of new smart components in the grid, etc. Based on a systematic analysis and comprehensive modeling of the correlation structure between these stochastic factors, this research project aims at cultivating the potential of electric vehicles as adjustable load under charging-only mode and distributed mobile electricity storage units, so that to optimize the charging/discharging behavior from a systematic viewpoint. Analytical model analysis (based on recent research advances of model predictive control technologies) and multi-layer high efficiency sampling technologies will be used to solve the resultant stochastic dynamic programming problem. Charging/discharging coordination problem involves multiple entities such as electric vehicles users, charging/discharging service providers and grid operation organizations, etc. These entities, though with different interests, need to cooperate with each other so that to fully utilize electric vehicles for maximal benefits including energy-saving and CO2 reduction. However, the global optimal solution does not necessary mean the profit/benefit maximization of each and every relevant entity. This project plans to use cooperative game theory to allocate the overall benefits from coordinated charging/discharging optimization. From the allocation, coordination mechanism can be established based on the mechanism design theory. Then an incomplete information dynamic non-cooperative game model is established to analyze the equilibrium strategies of the relevant entities under the coordination mechanism. Based on an in-depth comparison between the centralized optimal coordinated strategy and the decentralized equilibrium strategies under the incentive compatible coordination mechanism, a comprehensive coordination strategy utilizing the advantages of both centralized and decentralized models and its supporting mechanism will be developed. According to the complexity of the problem, Principal Component Analysis, stratified sampling, model predictive control and dimension reduction techniques will be used based on the characteristics of the model, in order to develop efficient solution algorithms. Beside the computer simulation and lab test, Campus level and regional level field test will be carried out, so that to further demonstrate the validity of the proposed models, methodologies and strategies, as well as yield more practical and relevant business models, local policies and other application solutions. The research fruits of this project can lay the scientific foundations for fully utilizing the energy saving and environment protection potentials of electric vehicles to support the safe and economic operation of the power systems.
规模化电动汽车的有序充放电问题含有多重随机因素,电动汽车在时间和空间上的不确定性、接入电网中随机间歇性电源出力和输变电设备故障停运的不确定性等多重随机因素间存在着复杂的非线性条件相关特征。本项目拟在系统研究主导随机因素间时空相关性的基础上,深入挖掘电动汽车作为灵活调节负荷(充电模式)和分布式移动储能单元(充/放电模式)的潜力,从整体角度优化电动汽车的充放电行为。有序充放电的实现牵涉到各类电动汽车用户、电网运营企业和电动汽车服务公司等多元主体,本项目拟运用合作博弈理论科学分配优化所得的综合效益,在此基础上设计激励相容的协调机制,并构建不完全信息动态多阶段博弈模型研究协调机制下各主体的均衡策略,以实现全局优化结果对各分散决策主体的有效引导。针对问题的复杂程度,本项目拟结合模型特征综合运用主成分分析、分层抽样、模型预测控制和动态系统降维等技术研制有效的求解算法,并进行验证。
随着插电式混合动力汽车和纯电动汽车的普及,其充电负荷将成为电力系统的一种新型、大容量的负荷。由于插电式电动汽车的充电行为具有随机性和不确定性,未来大规模电动汽车的充电可能对电力系统的安全经济运行造成不利的影响。但是,电动汽车的充电负荷具有一定程度的可控性,如采用有效的调度与控制方法,对电动汽车的充放电进行智能化管理,减少大量电动汽车的接入对电网带来的负面影响,可大大改善电网运行的经济性与安全性。因此,研究电动汽车的有序充电策略,充分发挥电动汽车对电网负荷削峰填谷等作用,对提高电网供电可靠性和资源利用效率具有重要的意义。.本项目围绕电动汽车有序充电这一主题,梳理了变量和参数在各主体间的耦合方式和传递关系;在此基础上找出关键因子,完成了电动汽车的充电负荷建模;然后,研究了电动车群有序充放电的集中决策模型(以电网运营商或充电服务商为主体)和分散决策模型(以个体用户为主体);接着,提出两阶段电动汽车充放电分层管理策略,并运用机制设计理论提出策略下的有效规则与价格机制;最后,在校园级和区域级应用场景中对策略和机制进行验证。.在上述研究的基础上,取得了以下进展:1、针对多重随机因素作用下的最优充放电管理问题,提出了基于期望的凸优化模型及其解析求解方法;2、提出了物理信息系统下电动汽车充放电的多智能体管理框架和计费模式;3、提出了融合电网信息、用户信息和地理信息的电动汽车充电导航策略,搭建了移动端导航平台;4、提出了两阶段电动汽车充放电分层管理策略下的有效规则与价格机制。.本项目的开展对实现规模化电动车群的有序充放电、随机波动性可再生能源的平抑和消纳、电网安全经济运行、个人和商业电动汽车用户的节能降费、电动汽车服务公司的运营管控等提供了理论支撑,对推进电动汽车的普及和科学利用,促进电力系统和全社会的节能减排事业起到了积极作用。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
农超对接模式中利益分配问题研究
粗颗粒土的静止土压力系数非线性分析与计算方法
基于LASSO-SVMR模型城市生活需水量的预测
内点最大化与冗余点控制的小型无人机遥感图像配准
智能电网与电动车融合网络构建及运营策略的基础性研究
计及运行条件的微电网可靠性评估策略研究
计及大规模电网时变参数的低频振荡多重扰动源定位研究
计及暂态稳定约束和群特性的主动解列策略研究