Microfactory is a frontier manufacturing discipline for fabricating micro/meso-scale 3D structure, and in which the effective integration of the "incremental manufacturing" 3D printing method has become a research focus. However, the printing resolution of existing 3D printing technology cannot meet the precision requirement of micro / meso-scale manufacturing. This research project intends to raise a novel liquid 3D deposition method with digital platemaking capability and 2400dpi high resolution, for preparation of micro / meso-scale 3D structure. The proposed method, for the first time, uses electrophotographics and high-resolution exposure technique to make a solid-particle plate on a platemaking roller, while the version of the pattern can be immediately changed after each cycle of liquid layer deposition. Based on the digital plate, this project will carry out the wettability studies among the components of photocurable liquid, the surface of platemaking roller, the surface of the solid particle, for effectively filling the liquid into the particleless cavity on the plate to form a thin layer of liquid pattern. Its thickness can be controlled at 3 - 5μm. The same wettability analysis can be done for effective deposition of the photocurable liquid on the substrate and the final solidation of the liquid. The project will provide a new theoretical foundation for studying liquid 3D deposition method to effectively promote the application of 3D printing technology in microfactory for manufacturing micro / meso-scale 3D structure.
微型加工厂是制备微/中尺度3D结构的前沿制造学科,而在其中有效集成"增量制造"3D打印方式已经成为研究重点。然而,现有的3D打印技术分辨率无法满足微/中尺度制造的精度要求。本项目拟提出具有数字化制版功能和2400dpi高分辨率的液体3D沉积方法,用于制备微/中尺度3D结构。该方法首次采用静电成像和高分辨率曝光技术,在制版辊表面进行固体颗粒制版,而版图案能够在每次液体层沉积后进行更改。本项目将进一步基于该数字化固体版,通过开展对于光固液体成分、制版辊表面、固体颗粒表面的浸润性研究,以完成液体有效填充版中的无颗粒空穴,形成液体图案薄层,而其层厚可以控制在3 - 5μm。同样的浸润性分析可以完成光固液体在衬底表面的有效沉积,而最终完成液体固化。本项目将为研究高分辨率液体3D沉积方法提供新的理论基础,有效促进3D打印技术在微型加工厂中的实现,完成对于微/中尺度3D结构的制备。
本项目创新提出一种基于静电成像技术的高分辨率数字制版工艺。通过发展组件性能与3D沉积机电的一体化装置平台,研究了制版材料表面电势、充/放电、表面磨损、残留清理等关键参数,形成高分辨率数字版制备的工艺控制路线。结合测量技术完成质量控制,展示了层厚分辨率小于10微米、横向分辨率小于20微米。在该研究过程中,通过版颗粒附着电荷、润湿性控制,阐释了微纳米颗粒组装与多相界面耦合的调控方法,结合光/热固化技术,实现了微结构快速大面积制造, 拓展其多材料沉积工艺并建立了一体化快速沉积与路径优化成形的聚合物直接制造方法,有效支撑了对于光/热固聚合物体系的固化成形与保形控制。研究进一步提出了导电掺杂聚合物的多孔材料设计与制备思路,有效完成介尺度3D多孔材料样品制造。
{{i.achievement_title}}
数据更新时间:2023-05-31
Combining Spectral Unmixing and 3D/2D Dense Networks with Early-Exiting Strategy for Hyperspectral Image Classification
Facile Fabrication of Hollow Hydrogel Microfiber via 3D Printing-Assisted Microfluidics and Its Application as a Biomimetic Blood Capillary
3D-printed highly ordered Ti networks-based boron-doped diamond: An unprecedented robust electrochemical oxidation anode for decomposition of refractory organics
电沉积增材制造微镍柱的工艺研究
An on-demand construction method of disaster scenes for multilevel users
面向3D打印的复杂多连孔结构数字化建模方法研究
基于自激发静电场驱动的热熔融喷射沉积高分辨率3D打印机理和规律研究
熔融沉积成型3D打印的声发射监控理论与方法研究
基于离子液体的铝电沉积形貌控制过程研究