Shaftless pumpjet propulsion is a new type of high-performance electrical propulsion plant: the propulsion motor is directly installed in the duct, so the propulsion shafting and related facilities are no longer needed; the rotor of motor and propeller’s blades are integrated together, thus the rotor can directly drive the blades to produce thrust; and the weight of rotor is supported by water lubricated radial bearing and the axial thrust of pumpjet is delivered by water lubricated thrust bearing. The shaftless pumpjet can inherits the advantages of pumpjet such as high efficiency, anti-cavitation and low radiation noise. In addition, shaftless pumpjet has compact structure, so the space of hull can be saved and coupled vibration of propeller-shaft-hull can be avoided. However, it is very difficult for the shaftless pumpjet to embody its outstanding performance, because of its complex structure, coupling of components, mutual exclusion of targets and difficulty in design. This project will decouple the complex interaction of multi-physical field of the high power shaftless pumpjet with the numerical simulation, and reveal the coupling principle and the key design factors. And then the multi-objective genetic algorithm are adopted, jointing with the shaftless pumpjet’s hydraulic design program, the electromagnetic design model and its performance numerical test platform, to set up global design sample’s large database, in which the general rule of high performance will be summed up basing on the response surface model. With the help of the high performance clusters platform, the shaftless pumpjet design cycle can be further shortened, and it can also guide the designers with no experience to complete their work. At last, the optimal sample can be selected according to the general requirements, the prototype will be developed and tested to verify the design method, numerical simulation method, and demonstrate the new high-performance shaftless pumpjet propulsion system.
无轴泵喷是将推进电机定子融合于泵喷导管中,将电机转子与桨叶集成,利用电机转子旋转直接带动桨叶做功,以及将改用水润滑的推力轴承移至推进器内,实现取消整个轴系及其配套系统的新型电力推进装置。高度集成的无轴泵喷,理论上可以继承泵喷高效、抗空化和低噪声优点以及轮缘推进结构紧凑的特点,但结构复杂、组件偶联、指标互斥和设计难度大一直制约着它的性能发挥及工程化。本项目以兆瓦级无轴泵喷为研究对象,采用多物理场计算方法厘清其耦合机理和关键设计变量;选取合理优化变量,联合无轴泵喷水力设计和电磁设计模型及其性能的数值仿真平台,采用多目标遗传算法开展设计样本在全局范围内自动寻优,建立设计样本大数据库,基于响应面模型评估设计变量影响因子,并根据总体需求选取最优样本,可借助集群机计算平台缩短设计周期,同时解决设计者对无轴泵喷无设计经验可依的问题。最后,通过样机研制和测试验证设计方法、计算模型和新型无轴泵喷技术。
无轴推进是一种将高功率密度永磁电机集成于推进器中,取消推进轴系及相关配套系统、设备,并利用电流传递功率的高性能全电力推进技术,其作为潜艇新型低噪声推进技术在国外已逐步开发和应用。本研究从顶层设计出发,探索高性能机桨一体式无轴泵喷设计方法,完成潜艇无轴泵喷推进器水动力、电磁场和温度场等多物理场的耦合计算和分析。经过探索,本项目初步取得的成果有:.①通过对无轴泵喷推进器内部的多物理场耦合过程进行全面深入地分析和分步解耦,形成了以电机气隙流动和轴承间隙流动为主线的两大耦合模型。对这两大耦合作用进行了建模计算和分析,结果表明设计达到了目标要求,并通过台架测试间接地验证了上述两种耦合计算模型的准确性。.②根据无轴泵喷内部的三维流动特性,采用三元叶片设计方法,结合多目标遗传优化算法和水动力数值计算等手段,建立了无轴泵喷叶轮、导叶的水动力匹配优化设计流程。最后借助考虑粘性的水动力数值计算方法,验证了优化设计方法的可靠性。.③完成无轴泵喷L型水动力测试平台的设计与研制,解决了无轴泵喷取消推进轴系以后,带来的转矩和推力无法直接测量的难题。该测试装置避免了外置测量支架对无轴泵喷推进器流场的干扰,具有精度良好、易拆装的优点。借助该测试装置和已有的小功率无轴泵喷样机,用试验的方法验证了上述水动力性能数值计算方法和水动力优化结果的有效性。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种基于多层设计空间缩减策略的近似高维优化方法
基于LS-SVM香梨可溶性糖的近红外光谱快速检测
"多对多"模式下GEO卫星在轨加注任务规划
二维FM系统的同时故障检测与控制
药食兼用真菌蛹虫草的液体发酵培养条件优化
新型无轴泵喷推进器线谱噪声产生机理及抑制技术研究
工程大系统设计的全局性多目标优化
高性能喷泵与进水流道的最优化设计及其与船体的匹配研究
水下航行体置于舵前无轴泵喷推进器水动力性能和流动噪声研究