The magnetically suspended momentum flywheel with gimballing ability can match the demand of high precision and quick response for the spacecraft with high precision, it is the leading direction of developing the magnetically suspended flywheel. With respect to these problems such as the stability of the high-speed rotor's suspension, the control of its vernier-gimballing effect and its application properties for the magnetically suspended momentum flywheel with gimballing ability, the properties of the magnetic bearings, the relationship between the gyroscopic torque and the tilting moment of rotor, the cases of decoupling the magnetic circuit and its moments of the conical reluctant force-type magnetic bearings, and the dynamical properties of the novel magnetic bearing-rotor system are researched originally and deeply. All that will give a theoretical support for the high-speed rotor with strong gyroscopic effect to suspend stably even if it is tilted by a large angle accordingly. Simultaneously, the physical properties of the vernier-gimballing effect control, the main factors of dynamical coupling of the high-speed rotor affecting its tracking control precision, and the methods to compensate the coaxial coupling torques when rotor presses are researched originally. These research results will lay a solid foundation for the flywheel to output a torque with high precision. When the magnetically suspended momentum flywheel with gimballing ability is in orbit, the control methods including not only the agile control of spacecraft within short time, the suppression of high frequency vibration, but also the rule of angular momentum distribution for flywheels and spacecraft, the stable control and its relative rules of magnetic bearings are researched deeply. All that will give us a hint to study the new application of magnetically suspended flywheel in spacecraft. Finally, the correctness and validity of our research will be verified by computer simulation and hybrid simulation experiments. This project can not only extend the the functions of the magnetically suspended flywheel and give us an opportunity to fill up the research blank of magnetically suspended momentum flywheel with gimballing ability between our nation and overseas,but also can provide us some novel ideas to develope the new inertia executor for spacecraft.
磁悬浮万向动量轮能够满足高分辨率对地观测所需高精度与快响应要求,是磁悬浮飞轮前沿发展方向。针对磁悬浮万向动量轮高速转子悬浮稳定性、输出力矩精度及其应用特性问题,首次研究磁轴承偏转特性、陀螺力矩与偏转力矩关系、锥形磁阻式轴承磁路与力矩解耦条件以及锥形磁阻式轴承-转子系统动力学特性,为强螺效应和大角度偏转条件下的高速转子稳定悬浮提供理论依据;首次研究微框架控制物理特性、转子动力学耦合影响跟踪控制精度的因素、转子进动对同轴耦合力矩的补偿方法,为实现输出高精度力矩奠定基础;首次研究磁悬浮万向动量轮实现航天器姿态短时间快速机动、高频振动抑制控制方法及其在轨条件下卫星的角动量分配律、磁轴承控制律与稳定控制方法,为探索磁悬浮飞轮的空间新应用提供理论借鉴;最后利用仿真和实验,验证研究方法和结果的正确性和有效性,为拓展磁悬浮飞轮的功能、填补我国磁悬浮万向动量轮研究空白、研制航天器新型姿态控制机构奠定基础。
磁悬浮万向动量轮能够满足高分辨率对地观测所需高精度与快响应要求,是磁悬浮飞轮前沿发展方向。.针对大偏角转子稳定悬浮问题,建立了普通磁悬浮飞轮不完全解耦磁轴承-转子系统动力学模型,提出了前馈矩阵+角位移负刚度补偿的转子偏转跟踪控制方法并通过实验验证了微框架效应控制的可行性;研究了不同类型磁悬浮飞轮输出力矩特性、偏转特性、陀螺力矩与偏转力矩关系,提出了永磁偏置磁轴承+洛伦兹力磁轴承的五自由度新型磁悬浮飞轮结构,以及基于承载比和耦合因子电磁解耦优化设计新方法,设计了一种转子偏转角度可达2º、磁路解耦径轴一体化锥形磁轴承;研究了磁悬浮刚度非线性特性,提出了基于电流刚度估计的大角度偏转转子自适应稳定控制方法以及基于参数变化和不确定扰动的RBF神经网络转子稳定悬浮控制方法,实现了强螺效应和大角度偏转转子稳定悬浮。.针对输出力矩精度问题,研究了罗伦兹力磁轴承非线性和参数不确定性,提出了提高转子偏转跟踪性能的自适应反步控制方法;研究了转子动力学耦合特性,指出耦合力矩是与位移、偏转角、电流等相关的复杂非线性干扰,提出通过反步积分滑模和反步双积分滑模提高偏转角和偏转角速度跟踪精度、利用内环滑模控制补偿附加偏转力矩,外环滑模控制准确跟踪角度信号消除滑模抖振的双闭环积分滑模控制方法。实验表明,该磁悬浮万向动量轮输出力矩3.14Nm,远远大于普通磁悬浮飞轮的0.1Nm,具有航天应用价值。.针对应用特性问题,建立了含磁悬浮万向动量轮的星体动力学模型,研究了卫星姿态稳定、高频扰动抑制控制方法。针对常见的0.6Hz高频扰动,仿真研究表明反作用飞轮控制下10s姿态扰动为1.0×10-3(),磁悬浮万向动量轮最大姿态扰动仅为3.8×10-6(),具有更好的抑制干扰能力;针对10-4Nm幅值周期性扰动仿真研究表明,磁悬浮万向动量轮仅有10-5的框架角偏差,适合用于抑制卫星周期性高频扰动。.该课题为拓展磁悬浮飞轮功能、填补我国磁悬浮万向动量轮研究空白、研制航天器新型姿态控制机构奠定了基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
特斯拉涡轮机运行性能研究综述
中国参与全球价值链的环境效应分析
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
感应不均匀介质的琼斯矩阵
动框架效应下非线性强耦合磁悬浮转子稳定控制研究
强陀螺效应磁悬浮高速转子系统的高精度鲁棒控制方法及实验研究
高温超导磁悬浮姿控储能飞轮高速转子的稳定特性研究
磁悬浮硬盘转子精度控制理论与技术的研究