Miniature, multifunctional, and high-performance radio-frequency (RF) hardware has been in a high demand for radar communication, aerospace, and aviation applications. In this project, the proposed waveguide filtering antennas to be practically implemented using metallic additive manufacturing technique are capable of realizing a breakthrough in their RF performance with a highly simplified post fabrication assembly. The engineered antennas are of assistance in enhancing both radiating and filtering characteristics with a high integration and a highly reduced weight. Inspired by the applicant’s pioneering development of metallic additive manufactured devices, the applicant will conduct fundamental research focusing theory and design methodology of novel metallic additive manufactured waveguide filtering antennas and meanwhile exploration of novel resonator geometries as well as electromagnetic coupling topologies. The principal scopes of this project include: RF design of broadband waveguide antennas with frequency-agile and spectrally duplexing characteristics; modeling and actualization of novel high-quality-factor cavity resonators and the constituent bandpass filtering antennas featuring an improved spectral selectivity; exploration of novel electromagnetic coupling topologies and suppression of higher-order modes for the cavity resonator by structurally loading internal asymmetrical posts. Highly-integrated and highly-efficient waveguide filtering antenna with good spectral selectivity and out-of-band suppression will be designed and experimentally validated. This project is of great significance for future evolution of the RF front-end passive waveguide components and subsystems, and is highly valuable for the additive-manufacturing-guided RF-design of waveguide antennas.
雷达通信和航空航天等应用领域要求射频硬件具备小型化、多功能和高性能的特点。基于金属增材制造技术的波导滤波天线能够突破传统分立器件在射频性能和加工装配上的瓶颈,既有助于提升辐射和滤波特性,又能在实现高系统集成度的同时有效减轻器件重量。在申请人前期从事的大量金属增材制造器件研发基础上,本项目将结合新型谐振腔结构及其电磁耦合拓扑,拟建立一套适用于金属增材制造技术的新型波导滤波天线理论与设计方法。本项目主要研究:宽带波导天线设计以实现频率捷变的双工覆盖;新型高品质因数谐振腔和良好频谱选择性的带通滤波结构的建模与实现;通过谐振腔的新型电磁耦合拓扑及非对称内部加载结构实现高次模抑制。本项目旨在理论设计具有良好频谱选择性和带外抑制特性的高集成度高效率波导滤波天线并完成实验验证。开展本项目对于未来射频前端无源器件和子系统的更新换代具有深远意义,且在结合增材制造技术指导波导天线设计的理论体系上具有重大价值。
为应对卫星、雷达等军用和民用领域对射频硬件小型化、多功能和高性能的需求,本项目基于增材制造技术突破传统分立器件在射频性能和加工装配上的约束,在提升辐射性能的同时实现系统的高集成度。在实施过程中,本项目设计了覆盖收发双工频段的宽频带波导天线阵列及馈电结构;提出了有效抑制半球形谐振器中的寄生模式及优化其带外抑制的方法,在此基础上设计了一款具有高Q值的新型缝隙球形天线,并进一步提出了一种带宽可控的新型带通滤波波导结构;同时,提出了一种利用谐振腔高次模构造宽带高增益滤波天线的方法。本项目在国内外权威学术期刊上以第一作者或通信作者身份发表SCI论文共计9篇,培养在读硕士研究生5名,合作培养博士研究生2名,同时在项目执行过程中获得奖励3项。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于混合优化方法的大口径主镜设计
电沉积增材制造微镍柱的工艺研究
信息非对称下考虑制造商回收行为的闭环供应链协调
MgB2线带材工艺及性能研究进展
考虑制造误差的圆柱斜齿轮传动动力学计算与分析
基于超音速激光沉积的金属增材制造技术基础研究
高功率密度液压集成块的金属增材制造关键技术研究
基于虚拟聚焦理论的增材制造金属构件超声成像检测研究
用于射电天文接收机的金属波导元件超声增材制备新技术研究