To detection of indoor air pollution gases, the sensitivity, selectivity, and stability of the graphene-based room temperature gas sensors must be improved greatly and multi-target detection should be performed at the same time, which is tremendous and present a major challenge. In the present project, a comprehensive strategy including structure optimization of graphene-based sensing materials, modification with inorganic membrane filtration, and combining with preparation technology of sensor array has been developed to improve the sensing performances of the gas sensors based on graphene-based materials. A variety of strategies of structure optimization, doping, surface functionalization and noble metal sensitization has been developed to improve recognition, conversion, and utilization efficiency of sensing materials, further improve the sensitivity and selectivity of graphene toward typical indoor air pollution, such as formaldehyde, ammonia and benzene; Using impregnated regulation, hydrophobic surface, inorganic membrane filtration modification strategies to improve sensor stability; Combining with the sensor array preparation technology and the temperature/humidity compensation method for research, the three indoor pollution gases could be detected at the same time. The implementation of this project not only provides a core device to build a small room temperature gas sensor, also can provide new theory, new method and new technology n for graphene-based at room temperature gas sensors, promoting the application of graphene in the field of gas sensing.
面向室内污染气体的准确检测,如何提升石墨烯室温气体传感器的灵敏度、选择性和稳定性,以及如何实现多目标同时检测是急需解决的关键科学和技术问题。本项目融合石墨烯基敏感材料的结构调控、无机抗湿过滤膜的修饰和微传感器阵列的制备等技术,突破上述瓶颈,为实现石墨烯室温气体传感器在室内空气检测领域的应用奠定基础。采用结构优化、掺杂改性、表面功能化、贵金属增感等多种策略提高敏感材料的识别功能、转换功能和敏感体利用效率,进而提高石墨烯对典型室内污染气体甲醛、氨气和苯的灵敏度和选择性;采用浸渍性调控、表面疏水化、无机抗湿过滤膜修饰等策略提高传感器的稳定性;结合传感器阵列制备技术和温/湿度补偿方法研究,构筑石墨烯气体传感阵列,实现对室内污染气体的同时检测。本项目的实施不仅为构筑小型化室温气体传感器提供核心器件,同时还能为石墨烯室温气体传感器的研究提供新理论、新方法和新技术,推动石墨烯在气体传感领域的应用。
室内污染气体检测用石墨烯室温气体传感器面临的主要瓶颈问题是灵敏度低和响应恢复速率慢。本项目以合成高性能石墨烯敏感材料、构筑室温气体传感器、分析结构敏感作用机制为研究目标,通过研究石墨烯敏感材料的结构特征,确立多种提高石墨烯气体传感器传感性能的新方法。提出表面氧空位浓度调控、贵金属敏化等方法提高石墨烯气体传感器的灵敏度;提出石墨烯掺杂调控、二硫化钼表面修饰、三元异质结构构筑等方法提升石墨烯气体传感器的响应恢复速率;明确石墨烯中含氧官能团、石墨烯复合材料中界面效应等对气敏性能的影响作用机制;为了分析石墨烯气敏材料中微观结构的影响机制,发展了半导体氧化物表面结构调控、碳基纳米材料结构设计、介孔材料设计合成、碳纳米材料表面功能化等结构调控方法,并研究其化学传感应用。以项目负责人为第一作者或通讯作者身份发表SCI检索论文21篇,授权国家发明专利6项。本项目为开发高性能石墨烯室温气体传感器提供研究基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
钢筋混凝土带翼缘剪力墙破坏机理研究
基于二维材料的自旋-轨道矩研究进展
服务经济时代新动能将由技术和服务共同驱动
敏感性水利工程社会稳定风险演化SD模型
用于呼气中痕量VOC标志物检测的石墨烯气体传感阵列研究
面向大气环境中低浓度NO2检测的石墨烯复合材料基气体传感器阵列研究
基于石墨烯多层膜的集成OTFT气体传感器阵列研究
功能化石墨烯气体传感器多气氛检测技术及敏感机理