In some advanced machine manufacturing fields, such as aerospace, energy and power, it is required to complete the tasks of bolt fastening, material pasting and drilling in deep cavity environments. In actual production, these tasks are often forced to be operated manually by workers with very slim body or slender arms, which results in great labor intensity, low operation efficiency, and poor quality consistency. A transformative solution to such production problems is to design a rigid-flexible mixture, and changeable stiffness system, which can go deep softly and operate with good stiffness. This project focuses on the creation problem of the variable stiffness operation machine in deep cavity environments. An innovative principle of the variable stiffness operation machine in deep cavity is proposed, which embeds magnetic powder inside the body of high-elastic silicone rubber and actuates the body with high pressure gas and electromagnetic field. This project also aims to reveal the rigid-flexible converting and hybrid actuation mechanism of the deep-cavity operation machine. Some core research jobs are emphatically developed, involving the variable stiffness mechanism of deep-cavity operation machine integrated with “electricity-magnetism-gas-solid”, the antagonistic configuration design of functional cavity with deep-cavity operation constraints,the stiffness parameter identification under “polymorphism” operations, the stiffness intelligent control considering communion operation behavior between the deep-cavity operation machine and environment. This project is aimed to explore the new design solution of variable stiffness operation in deep cavity, and promote the applications of rigid-flexible mixture systems actively to the high-end machine manufacturing fields of aerospace or else.
在航空航天、能源动力等高端装备制造领域中,往往需要在深腔环境中完成螺栓紧固、材料贴覆、钻孔等作业任务。实际生产中,此类任务被迫由体形瘦小或手臂细长的工人手动操作完成,劳动强度大、操作效率低、质量一致性差。寻求一种刚柔并济、刚度可变,既能柔性进入、又能刚性作业的操作器是解决这类生产难题的变革性方案。本项目针对深腔环境约束的可变刚度作业器创制难题,提出高弹性硅橡胶内嵌磁致力响应材料、以高压气体和电磁场混合驱动的变刚度深腔作业器新原理,揭示深腔作业器的刚-柔转变、混合驱动内在机制,重点开展“电-磁-气-固”一体化深腔作业器变刚度机理、虑及深腔操作约束的作业器功能腔道拮抗构型设计、深腔作业器操作刚度特性参数辨识、深腔作业器-环境共融操作行为下的刚度智能调控等核心研究工作,探索变刚度深腔作业器设计新思路,旨为促进刚柔一体化系统在航空航天等高端制造领域推广应用做出积极贡献。
面向复杂深腔环境刚柔可变、安全交互的应用需求,针对可变刚度深腔作业器创制难题,提出了基于磁致变刚度效应的气动软体作业器创成原理。阐释了磁致弹性体变刚度效应与磁场强度/铁磁颗粒粒度/铁磁体积分数/基体硬度的关系;设计了多种具有约束层的磁致变刚度气动拮抗构型,并基于有限元分析了不同结构参数下的运动响应规律;制备了可用于浇注制造和3D打印成型的磁流变弹性体材料,提出了深腔作业器浇注制造与3D打印制造方法;建立了磁致变刚度软体作业器的刚度模型,并试验辨识了关键参数;提出了基于视觉反馈的软体作业器控制方法,增强了有效负载和位置保持能力;研制出2种可集成于三轴平台/机器人末端的磁致变刚度气动软体作业器,在深腔柔性操作方面具有一定的应用潜力。通过本项目研究,丰富了变刚度作业器(机器人、柔性夹具等)领域的理论方法和技术。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
基于SSVEP 直接脑控机器人方向和速度研究
拥堵路网交通流均衡分配模型
卫生系统韧性研究概况及其展望
可变体飞行器气动原理与变形结构力学研究
深腔作业连续体机器人的运动学分析和力位操控性能综合
面向托卡马克腔内维护作业的自铺轨道式机械臂宏动平台刚度优化及动态构型控制
多自主水下航行器协同作业关键技术研究