With the rapid development of ultrafast laser technology, precise control of optical waveform in the time scale of less than one optical oscillation period has now been achieved, which opened up numerous emerging disciplines represented by optical wave electronics. For sub-optical-cycle waveform, its time-domain evolution has deviated from the sinusoidal oscillation approximation in the traditional nonlinear optics. In this scenario, the light-matter interactions highly depends on the transient variation of the driving laser waveform. Manipulating microscopic particles by such kind of new light fields helps observe unprecedented scientific phenomena and reveal new scientific laws..This project aims to achieve the precise control of multi-channel ultra-broadband, high-energy, few-cycle pulses in both time and frequency domain. The control is implemented by precisely regulating the intensity, relative time delay and phase of the near-single-cycle pulses combined with synchronous terahertz transient electric fields driven by the same femtosecond laser. This technique results in a coherent waveform synthesis less than mono-cycle in the time domain, covering multi-octave spanning spectra in the frequency domain, which can be accurately phase-locked and controlled in a programmable way. Based on the systematic experimental research, optimizing control parameters by genetic algorithm facilitates the ultimate control of the light field. This frontier projects is of great academic significance and is expected to make new breakthroughs in many research fields, such as precision spectroscopy, ultrafast science, extreme physical measurement, and quantum manipulation.
随着超快激光技术的快速发展,目前人们已经能够在不到一个光学振荡周期的时间尺度内精确调控光场波形,开创了以光波电子学为代表的众多新兴学科。亚周期光场所对应的时域演化已偏离了传统非线性光学中的正弦振荡近似,因此当亚周期光场与物质相互作用时,所发生的超快过程极度依赖驱动光场波形的瞬态变化。利用此类新型光场操控微观粒子,将有助于人们观察到前所未有的科学现象,从而揭示新的科学规律。.本项目拟通过精确控制多路超宽带、高能量、近单周期脉冲的强度,延迟和相位,结合同源飞秒激光驱动的同步太赫兹瞬变电场,实现光场在时域与频域的精确控制,得到时域上小于单个光学周期、频域上覆盖多个倍频程光谱、相位可精确锁定、振荡波形可编程控制的相干光场。在系统实验研究的基础上借助遗传算法优化调控参数,从而实现对光场的极限操控。此前沿课题具有重要学术意义,有望带动精密光谱学、超快科学、极限物理测量、量子调控等重多研究领域的新突破。
亚周期光场能够在不到一个光学振荡周期的时间尺度内精确调控光场波形,其所对应的时域演化已偏离了传统非线性光学中的正弦振荡近似,因此当亚周期光场与物质相互作用时,所发生的超快过程极度依赖驱动光场波形的瞬态变化。本项目通过精确控制多路超宽带、高能量、近单周期脉冲的强度,延迟和相位,实现光场在时域与频域的精确控制,得到时域上小于单个光学周期、频域上覆盖多个倍频程光谱、相位可精确锁定、振荡波形可编程控制的相干光场。在系统实验研究的基础上借助遗传算法优化调控参数,实现对光场的极限操控。成果已发表于本领域高水平期刊,获得美国专利授权,为进一步开展超快物质科学、极限测量、量子调控等领域原创探索奠定技术基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
粗颗粒土的静止土压力系数非线性分析与计算方法
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
瞬态光场在亚周期尺度的操控研究
亚周期光场产生中的紫外脉冲整形
周期势场相干调控矢量光孤子及其应用研究
蜂巢型周期调制下空间结构光场的传输与调控