Thermonuclear fusion energy is one of the ideal energies in the future, the energy density of which is proportional to the fourth power of the poloidal magnetic field. Thus, the increase of the energy density in the future thermonuclear fusion reactors puts forward higher requirements for the higher current density (higher than 100KA)under higher magnetic field (16T) and higher current-carrying capability resistance to larger strain (160ton/meter).Comparing with Nb3Sn, featuring outstanding intrinsic current-carrying capability in the high magnetic field and resistance to the strain of the Nb3Al superconducting material, make it promising to be used in future thermonuclear fusion reactors. In this proposed project, we will conduct the investigations of the experimental measurements of multi-fields coupling, theoretic modeling of the electromagnetic constitute law for the Nb3Al superconducting material. etc.. The main subjects conducted in this project include (1) design and manufacture the experimental setup based on the magnetic field, cryogenic temperature, high current and multi-loading modes, which is suitable for the superconducting materials,(2) in situ experimental measurement system about the relationship between the damage evolution process and the current-carrying capability. Based on these experimental devices, the electromagnetic constitute law of Nb3Al superconducting material in case of multi-fields coupling will be constructed, and theoretic characterization of the relationship between the damage evolution process and the current-carrying capability will be carry out. In this project, the major goal is to establlish the experimental equipments for superconducting materials investigations. By means of these investigations, it is hopeful that the research is supposed to bring us the fundational experimental devices for the superconducting materials studies in China,and the results obtained in this project are able to improve the independent ability for superconducting materials applications.
热核聚变能是未来理想的能源,其能量密度正比于环向磁场强度的四次方。因此,未来聚变示范堆中等离子体能量密度的提高对超导磁体中导体在更高磁场(16T)下的载流能力(高于100KA)和应变许用特征(承载160吨/米)提出更高要求。与Nb3Sn相比,Nb3Al超导材料在高场下电流密度更高,且具有更优异的抗应变能力,将是未来磁约束聚变堆,特别是示范堆高场磁体的理想选择。本项目以Nb3Al材料为研究对象,重点开展(1)涉及强磁场、极低温、大电流、含有多种力学加载模式的超导材料实验测试平台与(2)超导材料内部损伤演化与宏观载流相关联的低温原位测试系统的研究。并以此为基础,建立Nb3Al超导材料在力-电-磁-热多场耦合环境中的电磁本构关系,同时,弄清其内部损伤演化与宏观载流能力的关联。本项目以测试系统研制为主体,其顺利完成将为我国超导材料相关研究提供基础设备,并以此来提升我国超导应用的自主能力。
热核聚变能是未来理想的能源,其能量密度正比于环向磁场强度的四次方。因此,未来聚变示范堆中等离子体能量密度的提高对超导磁体中导体在更高磁场(16T)下的载流能力(高于100KA)和应变许用特征(承载160吨/米)提出更高要求。重点开展(1)涉及强磁场、极低温、大电流、含有多种力学加载模式的超导材料实验测试平台与(2)超导材料内部损伤演化与宏观载流相关联的低温原位测试系统的研究。并以此为基础,建立Nb3Al超导材料在力-电-磁-热多场耦合环境中的电磁本构关系,同时,弄清其内部损伤演化与宏观载流能力的关联。本项目以测试系统研制为主体,其顺利完成将为我国超导材料相关研究提供基础设备,并以此来提升我国超导应用的自主能力。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于多模态信息特征融合的犯罪预测算法研究
卫生系统韧性研究概况及其展望
基于二维材料的自旋-轨道矩研究进展
水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应
高场超导复合材料变形-超导电性能多尺度耦合特性及其本构描述
Nb3Al超导材料的高场特性及调控机理
微纳米超磁致伸缩材料多场耦合本构关系及动力学特性研究
多场耦合下铁磁形状记忆合金本构行为的跨层次分析