Quantum entanglement is the physical foundation of quantum computation and quantum communication, quantum entangled frequency comb is one of quantum computation hardware platforms. Entangled frequency comb based on silicon microresonator has many advantages such as portability,CMOS compatiblity, and integrability. It can be used to construct silicon chip for quantum computation,on which many quantum software algorithms such as Shor factoring algorithm, Grover algorithm can be demonstrated, together with passive quantum devices for example silicon beam splitter, phase modulator et al. The marriage of classical integrated electronic circuit and quantum integrated optical circuit, both of those can be fabricated by CMOS techniques, provides a bridge between classical computation and quantum computation. In our proposal, classical and quantum nonlinear Schrodinger equanions of silicon microresonator are firstly constructed. According to these equations,Matlab simulation softare will be programmed in order to optimally design geometric structure and dispersion relationship of silicon microresonator. When the phase matching conditions are satisfied of cascaded four wave mixing processes of silicon microresonator, the theoretical scheme of generating entangled frequency comb is finished. On the advanced platforms of silicon photonics of both State Key Lab in SJTU and the Institute of Optics in University of Rochester, the experiments of silicon optical frequency comb cam be implemented to test the theoretical prediction. Finally, the effects of the characteristics of silicon such as loss, dispersion,SPM, XPM,TPA et al on transmission of entangled optical frequency comb are investigated, the theory of quantum silicon photonics will be completed.
量子纠缠是量子计算和量子通信的物理基础,量子纠缠光频梳是量子计算硬件平台之一。基于硅基微纳谐振腔的量子纠缠光频梳具有体积小、与CMOS工艺兼容、易于集成等优点,与分光器、相位调制器等无源量子器件融合,构成硅基光量子芯片,可运行Shor、Grover等量子软件算法。同时采用CMOS工艺制备的经典集成电路和量子集成光路的无缝融合在经典计算和量子计算之间架起桥梁。本项目首先建立硅基微纳谐振腔的非线性薛定谔经典方程和量子动力学方程,据此编制Matlab数值仿真软件,优化硅基微纳谐振腔的几何结构设计和色散关系,达到硅基谐振腔级联四波混频效应的相位匹配条件,完成量子纠缠光频梳的理论方案设计。利用交大光纤国重实验室和罗切斯特大学光学中心先进的硅基光子学实验平台,进行硅基微纳谐振腔光频梳实验,验证理论结果,并研究硅基损耗、色散、SPM、XPM、TPA等对量子光频梳传输特性的影响,建立并完善硅基光量子学。
量子纠缠是量子计算和量子通信的物理基础,量子纠缠光频梳是量子计算硬件平台之一。基于微纳谐振腔的量子纠缠光频梳具有体积小、与CMOS工艺兼容、易于集成等优点,与分光器、相位调制器等无源量子器件融合,构成硅基光量子芯片,可运行Shor、Grover等量子软件算法。同时采用CMOS工艺制备的经典集成电路和量子集成光路的无缝融合在经典计算和量子计算之间架起桥梁。本项目完成了以下四个方面的额研究内容:(1)首先基于非线性薛定谔方程和边界条件建立了微纳非线性谐振腔的经典理论模型(GLLE方程),并采用分步傅里叶变换算法编制了光学频率梳仿真平台,可全面系统地分析光学谐振腔的色散、损耗、非线性、拉曼散射、双光子系统、自由载流子、品质因子、泵浦功率、失谐量对微腔频梳光学动力学过程的影响,可以快速仿真孤子频梳的实时演化过程,优化设计微腔参数和泵浦光参数实现高性能多用途的光学频率梳;(2)分别采用量子主方程以及郎之万方程两种方法研究微腔色散、损耗、非线性效应、品质因子、泵浦功率、失谐量对微腔光学频率模式之间的量子关联性的影响,通过优化设计,制备了多种基于高品质因子光学微腔的光频梳型多组份量子纠缠源;(3)自主研发了一套非线性光子晶体设计软件,可设计任意二阶非线性晶体的准周期结构,理论上可使任意多个参量过程同时满足准相位匹配条件,完成任意光学频率变换。采用该软件设计了多周期性极化铌酸锂晶体,完成了多种频率梳型纠缠源理论设计;(4)设计了多种基于光频梳型多组份纠缠源的量子安全通信协议与方案。基于非线性介质微纳谐振腔的光频梳在超快精密测距、相干光通信、精密光谱、光频合成、光钟、微波光子学以及天文观测等方面具有重要的应用。光频梳型量子多组份纠缠源用于实现量子计算的硬件平台,可以实现基于时间-频率编码的量子信息处理,相对于其他自由度的编码,具有更好的扩展性和集成优势,具有实现与CMOS工艺兼容的集成硅基光量子芯片的巨大潜力。
{{i.achievement_title}}
数据更新时间:2023-05-31
感应不均匀介质的琼斯矩阵
基于图卷积网络的归纳式微博谣言检测新方法
基于混合优化方法的大口径主镜设计
极地微藻对极端环境的适应机制研究进展
双粗糙表面磨削过程微凸体曲率半径的影响分析
低功耗芯片型器件产生高阶边带、光频梳和量子纠缠的理论研究
光频梳的硅基集成及应用基础研究
基于光学频率梳的大尺度纠缠态光场产生及应用
CMOS兼容单谐振腔可见-红外光频梳产生机理与技术研究