Mapping the structural connectivity patterns of the human brain (also called "human strucutral connectome") by diffusion MRI technique is fundmentally important for understanding the work mechanisms of the brain. However, the related theory and methodology of brain connectome analysis have not been developed well. In this project, we will utilize diffusion MRI dataset to establish a scientific and standard methodology system of human structural connectome. Specifically, several researches will be performed: 1) evaluation of effects of the data preprocessing on the network construction; 2) evaluation of the reliability and stability of the topological properties of brain networks; 3) characterization of the topological organization of brain networks under high resolution; 4) construction of the combined model of structural and functional brain networks. Moreover, we will apply the connetome-based methodology to investigate the multiple sclerosis (MS) and reveal the abnormal connectivity patterns in MS patients. The topological alterations in MS will provide connectome-based biomarkers for the early detection and progression of the disease. Meanwhile, the disease will serve as a good model with white matter lesions to validate the accuracy of connectome analysis. This project will make contributions to the great scientific frontier "the human connectome" and be important for understanding the neuropathological mechanisms of the MS disease. The project applicant has worked on the methodology and applications of diffusion tensor imaging and brain network analysis for 7 years, and has published 14 SCI papers as the first or corresponding author, accumulating plenty of research experience for this project.
基于扩散磁共振成像进行活体人脑白质结构网络的构建及其描述(即"人脑结构连接组学")对于揭示人脑的工作机制具有重要意义,然而相关的计算理论与方法仍不成熟。本项目拟通过分析扩散磁共振成像数据建立一套系统、规范的脑结构网络计算方法体系,具体包括:脑结构网络的构建与评价;脑结构网络拓扑属性的可重复性和稳定性评价;高分辨率脑结构网络拓扑属性的系统描述;脑结构-功能网络的联合模型等。进一步,本项目拟将建立的脑结构网络计算方法用于多发性硬化病,以发现病人异常脑连接模式,并以此模式为敏感特征建立病人早期诊断和病情进程检测的脑网络影像学标记,同时为建立的脑结构网络计算方法提供疾病模型验证。该项目将为"人脑连接组学"这一重大科学前沿课题做出贡献,而且对揭示多发性硬化病的发病机制具有重要意义。本项目申请人从事扩散张量成像和人脑连接组学研究已有7年,以第一或通讯作者发表SCI论文14篇,为该项目积累了丰富经验。
本项目主要基于扩散磁共振成像数据建立了一套系统规范的脑结构网络计算方法体系,具体包括:数据预处理方式对脑网络构建的评价;脑网络拓扑属性的可重复性和稳定性评价;不同分辨率下脑网络拓扑属性的系统描述;脑结构-功能网络的融合计算模型等。进一步,本项目将建立的脑网络计算方法应用于多发性硬化病研究,揭示了病人异常脑连接模式,并以此模式为敏感特征建立了病人早期诊断和病情进程检测的脑网络影像学标记,同时为建立的脑网络计算方法提供了疾病模型验证。在该项目的资助下,我们围绕基于神经影像的人脑连接组学,以第一或通讯作者发表SCI论文12篇, 获得软件著作权1项,培养年轻教师1名,毕业博士生1名,硕士生3名。项目组成员参加了国际人脑年会等国内外重要会议5次,并做口头报告3次。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
转录组与代谢联合解析红花槭叶片中青素苷变化机制
基于多模态信息特征融合的犯罪预测算法研究
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
基于非线性接触刚度的铰接/锁紧结构动力学建模方法
基于多模态磁共振成像的认知老化的人脑连接组学研究
基于磁共振成像的人脑功能连接组生理代谢基础研究
基于多模态磁共振成像的创伤后应激障碍的脑连接组学研究
人脑边缘区结构及功能磁共振成像研究