With the development of nanotechnology and terahertz technology, theoretic research of nanosensor network has been gain significant attentions recently due to its potential applications. According to the limited capabilities of nano-nodes and the peculiarities of Terahertz Band, the fundamental research objectives of this project are to design the communication mechanisms of nanosensor networks in the Terahertz Band, and to improve the quality of service and the utilization of network resources. The specific outcomes of this project are: 1) for the limited energy provided by nano-nodes, novel energy harvesting system will be proposed based on the piezoelectric nano-generator, and then optimize the energy allocation by presented energy consumption and harvesting models to realize the self-powered nano-nodes; 2) analyze the effect of molecular absorption, path attenuation, colored noise and nano-antennas on the terahertz communications by considering the transmission frequencies, distances and the height of antenna, to present a comprehensive Terahertz Band channel model with full frequency band and short transmission distance; 3) by integrating the limited capabilities of nano-nodes and the peculiarities of terahertz communication, design novel, efficient, energy-aware or frequency-aware modulation mechanisms, MAC layer protocols and multi-hop routing protocols, to reduce the signal interference and network load, and improve the energy utilization and network throughput. These outcomes can be used to realize the application of nanosensor networks, and have important theoretical significance and practical values.
随着纳米技术和太赫兹技术的发展,纳米传感网的潜在应用价值使其理论研究正成为无线通信领域的研究新热点。针对纳米传感网的诸多特性,本课题重点研究基于太赫兹频段的纳米通信技术,提高纳米传感网的网络服务质量和资源利用率。研究纳米节点能量供应的局限性,设计基于压电式纳米发电机的新型能量捕获机制,构建以纳米节点为单位的能量捕获和消耗模型,优化能量分配策略,实现纳米传感网的自供能通信。根据纳米传感网中通信频率高、通信距离短和天线尺寸小等特性,分析分子吸收、路径衰减、信道有色噪声、纳米天线等对太赫兹通信的影响,建立一个短距离、全频段的太赫兹信道模型。综合纳米节点的能力局限性和太赫兹通信的特性,设计新型简洁高效、能量频率感知的调制编码机制、MAC层协议和多跳路由协议,降低信号干扰和网络负载,提高能量利用率和网络吞吐量。本课题的研究成果将为纳米传感网的实际应用提供理论基础,具有重要的理论意义和工程应用价值。
随着纳米技术和太赫兹技术的发展,使得纳米传感网从理论成为现实。根据纳米传感网中纳米节点的物理局限性和太赫兹频段的通信特性,本课题重点研究基于太赫兹频段的纳米通信技术 ,构建纳米传感网的底层通信理论和优化通信技术。针对纳米节点能量供应的局限性和基于压电式纳米发电机的能量捕获系统,构建了以纳米节点为单位的能量捕获和消耗模型,设计了能量优化分配机制、能量感知的低码重编码机制,实现纳米传感网的自供能数据传输。针对纳米传感网太赫兹通信频率高、通信距离短和天线尺寸小等特点,分析分子吸收、路径衰减、信道有色噪声、纳米天线等对太赫兹通信的影响,建立了一个完整、短距离、全频段的太赫兹信道容量模型,并在此基础上建立了面向太赫兹通信的MIMO信道模型、太赫兹信道干扰模型和信号覆盖模型。综合纳米节点的物理限制和太赫兹通信的特性,设计新型简洁高效、能量频率感知的太赫兹有向通信MAC协议和基于中继的纳米网络MAC协议 ,不仅降低信号干扰和网络负载,而且提高能量利用率和网络吞吐量。本课题的研究成果将为微观尺寸的物联网(纳米传感网)和超高频、超宽带通信(太赫兹通信)提供理论基础和实际指导,具有重要的理论意义和工程应用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
路基土水分传感器室内标定方法与影响因素分析
低轨卫星通信信道分配策略
一种改进的多目标正余弦优化算法
基于混合优化方法的大口径主镜设计
太赫兹近场激发型分子传感器
克服波束色散的太赫兹MIMO通信关键技术研究
灵活栅格大容量光子太赫兹通信关键技术研究
基于纳米结构的新型太赫兹波源