Solid oxide electrolysis cell (SOEC) have the advantages of high efficiency, environmental-friendly and reasonable cost etc., so the further development of SOEC electrolysis technology is of great significance for realizing the circulation of hydrogen production and electricity generation, and then solving the energy crisis and environmental pollution problems. This project is proposed to prepare a variety of combined metal oxide nanowires with perovskite phase and screen out the suitable nanowires, which would be infused by Ce1-xTmxO2-δ(Tm=Cu,Mn,Ti,V,Mo etc.) nanoparticles with high catalytic activity to construct a new 3D-network hydrogen composite electrode with high activity and high stability for SOEC. The research would be focused on the interaction mechanisms between nanoparticles and nanowire skeleton, and the relationship between the change of microstructure and electrochemical properties of hydrogen composite electrode in electrolytic state. The results would be beneficial to optimize the preparation technology of hydrogen composite electrode. By using a variety of testing methods, the surficial adsorbed species and intermediate state in hydrogen composite electrode would be proceeded the in-situ dynamic characterization in electrochemical reaction process. The electricity-catalyze mechanisms of hydrogen composite electrode would be studied through the correlation between the dynamic process of the catalytic reaction and the electrochemical properties of the electrodes. The above researches would indicate the direction and provide the reference for the development and application of SOEC hydrogen electrode materials.
固体氧化物电解池具有高效、环境友好以及成本合理等优点。进一步发展SOEC电解技术,对于实现制氢和发电循环,进而解决能源危机和环境污染问题具有重大的意义。本项目拟采用静电纺丝法制备多种钙钛矿复合金属氧化物纳米线并进行筛选,在其纳米线骨架中引入具有高催化活性的Ce1-xTmxO2-δ(Tm=Cu、Mn、Ti、V、Mo等)纳米颗粒,构筑新型高活性及高稳定性的三维网络SOEC复合氢电极。重点阐明纳米颗粒与纳米线骨架之间的协同催化机制,分析研究在电解状态下复合氢电极的微细结构变化与电化学性能间的联系,从而进一步优化复合氢电极的制备工艺。综合运用多种测试手段对复合氢电极电化学反应过程中的表面吸附物种、中间态等进行原位动态表征,将电极催化反应的动态过程与其电化学性能相关联,研究复合氢电极的电催化反应机理。此项目工作可为SOEC氢电极材料的研发应用指明方向、提供参考。
氢能是最清洁的可再生能源,是未来十分具有竞争力的化石燃料替代品。相比于成本高且排放温室气体CO2的传统制氢方式,固体氧化物电解池(Solid Oxide Electrolysis Cell,SOEC)SOEC具有高效、环境友好以及成本合理等优点,极具市场应用前景。本项目采用静电纺丝+离子浸渍法制备出以SrMO3(M=Mo、Fe、Ti)/YSZ钙钛矿复合金属氧化物纳米线为骨架、Ce0.9Tm0.1O2-δ(Tm=Cu、Fe、Ni)纳米颗粒修饰构筑的三维网络SOEC复合氢电极;筛选出纺丝过程易调控、纺丝产物不易碎、纳米线分布均匀(直径约为200~300 nm)的SrTiO3/YSZ基两相纳米线作为氢电极骨架;通过A位掺杂以及对浸渍过程的调控,浸渍量为1:0.74的Ce0.9Ni0.1O2-δ@La0.2Sr0.8TiO3/YSZ基单电池在1.3 V(850 ℃,20% H2O、80% H2)下的电流密度为0.400 A/cm2,极化电阻为0.124 cm2;综合运用多种测试手段研究复合氢电极的微细结构变化与电化学性能间的联系,阐明纳米颗粒与纳米线骨架之间的协同催化机理,明确经过化学修饰的电极表面更有利于水分子的吸附裂解制氢,开发出性能优异、结构稳定的新型氢电极材料。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
基于第一性原理计算的SOEC双钙钛矿型氢电极材料设计及电极反应动力学研究
钙钛矿型复合纳米晶的制备及其储氢性能研究
固体氧化物电解池双钙钛矿氢电极材料的制备、催化反应机理及性能衰减机理研究
异质钙钛矿微结构材料制备及性能研究