To realize ITER device safely operating in high confinement regime, it has to successfully control and mitigate the edge localized mode (ELM) because it will dramatically increase the heat exhaust loading on the divertors of tokamak during the ELM crash which will damage the divertors and reduce the ITER lifetime. ELM mitigation and control are currently the hottest key physics and technology problems required to be solved urgently. Neutrals (deuterium and impurities) injection is an effective and important method to mitigate and control ELMs. Supersonic neutral beam injection induced ELM mitigation involves both the neutral particle and plasma transport in the macroscopic scales, and also the ELM excitation, growth and nonlinear saturation physical processes in the microscopic scales, which are two indispensable and fundamental parts. This project will develop a self-consistent and multi-time-spatial scale physical model to comprehensively study supersonic neutral (deuterium and impurities) beam injection induced ELM mitigation in both macroscopic transport scale and microscopic turbulence scale in theory, simulation and experiment. It will make comprehensive comparisons and find the fundamental ELM mitigation physical mechanism for supersonic neutral beam injections of both deuterium and impurities. Based on the BOUT++ code, we will independently develop a new code to simulate the complete process of the neutrals injection induced ELM mitigation including the microscopic transport, ELM crash and ELM re-formation, which is a well-known challenge but also a most valuable work in magnetic fusion researches. The results of this program will not only give some suggestions for the ELM mitigation and control experiments in current tokamaks, but also provide some direct technical support for future ITER device.
ITER磁约束核聚装置的稳态高约束运行必须实现对边缘局域模(ELM)的有效控制与缓解,因为ELM爆发将导致偏滤器靶板热负载增加而损坏,是当前国际最热的亟待解决的关键物理和技术问题。中性粒子(氘和杂质)注入是缓解ELM的一种行之有效的重要方法。中性粒子注入缓解ELM既涉及到宏观中性粒子和等离子体输运物理过程,又涉及到微观ELM激发、增长和非线性饱和的物理过程,两者缺一不可。本项目将采用理论模拟与实验相结合的方法,从超声中性粒子(氘和杂质)注入宏观输运和微观湍流这两个方面同时开展自洽地、自组织地,进行多时空间尺度综合对比分析研究,理解其物理机制并发展控制技术。基于BOUT++程序,独立地开发新的程序来模拟完整的中性粒子注入ELM缓解过程,这一学界公认的最具挑战且最具价值的工作,并同时开展氘和杂质注入ELM缓解实验综合对比研究。从而,指导当前实验中ELM缓解与控制,并为ITER的提供技术支持。
ITER磁约束核聚装置的稳态高约束运行必须实现对边缘局域模(ELM)的有效控制与缓解,因为ELM爆发将导致偏滤器靶板热负载增加而损坏,是当前国际最热的亟待解决的关键物理和技术问题。中性粒子(氘和杂质)注入是缓解ELM的一种行之有效的重要方法。中性粒子注入缓解ELM既涉及到宏观中性粒子和等离子体输运物理过程,又涉及到微观ELM激发、增长和非线性饱和的物理过程,两者缺一不可。本项目将采用理论模拟与实验相结合的方法,从超声中性粒子(氘和杂质)注入宏观输运和微观湍流这两个方面同时开展自洽地、自组织地,进行多时空间尺度综合对比分析研究,理解其物理机制并发展控制技术。基于BOUT++程序,独立地开发新的程序来模拟完整的中性粒子注入ELM缓解过程,这一学界公认的最具挑战且最具价值的工作,并同时开展氘和杂质注入ELM缓解实验综合对比研究。从而,指导当前实验中ELM缓解与控制,并为ITER的提供技术支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于多模态信息特征融合的犯罪预测算法研究
居住环境多维剥夺的地理识别及类型划分——以郑州主城区为例
桂林岩溶石山青冈群落植物功能性状的种间和种内变异研究
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
多空间交互协同过滤推荐
EAST中性束注入束功率爬升关键问题研究
旋转等离子体中中性束注入的数值模拟研究
强流中性束注入器稳态运行的关键问题研究
EAST上锂球注入缓解I型边界局域模的行为机制研究