The strength improvement of the in situ particle reinforced aluminum matrix composites is limited by the brittleness of reinforcements and its optimized structure at low level. Therefore, an in-situ tough reinforcement and a hierarchical aluminum matrix composites are studied in this work. The in situ intragranular particles with nano particles as the toughness phase are fabricated by the thermal explosion reaction. The in situ intragranular particles are dispersed uniformly in the aluminum matrix to construct the hierarchical aluminum matrix composite with the in situ intragranular particles as the reinforcement. The reaction thermodynamics and kinetics of aluminium matrix materials will be investigated. The forming mechanisms of in situ intragranular particles by thermal explosion reaction will be revealed by combining with structure and micrograph anlysis of intragranular. The interface between nano phase and matrix of intragranular, and their orientation and coherent relation are investigated. The toughness improvement mechanisms are clarified by study the restraining effect of nano phase on the crack propagation. The main interface structure between the in situ intragranular particles and matrix and their orientation and coherent relation will be investigated. In the in-situ tensile processes of the composites,the influences of the intragranular particles on the forming and progressing of the crack, the forming and moving rules of dislocations are observed. Then the strengthening mechanisms of the hierarchical structure constructed by the intragranular particles on the aluminum matrix composites will be explained. A new reinforcement of in situ intragranular particles and a novel structure of hierarchical structure will be obtained and its reinforcement mechnisms will be described in this work. This results can support the theory and techonology for the development of the aluminum matrix composites.
自生颗粒增强铝基复合材料中增强体韧性不足和组织结构优化程度不高限制了其力学性能的进一步提升。本项目针对以上两个问题,开展了自生韧性增强体和分级结构复合材料研究。通过热爆反应生成以纳米相增韧的自生内晶颗粒增强体,并使其弥散分布在铝基体中,形成以内晶颗粒为增强体的分级结构铝基复合材料。研究反应体系的热力学与动力学机制,并结合内晶颗粒的结构形貌分析,揭示内晶颗粒的热爆反应形成机制;分析纳米相与内晶颗粒基体的界面结构、位向关系与共格性以及纳米相在抑制裂纹扩展方面的作用,阐述纳米相对内晶颗粒基体的增韧机理;分析内晶颗粒与铝基体的界面位向关系与共格性,原位观察复合材料在拉伸过程中裂纹形核与扩展以及位错运动规律,结合数值模拟方法,揭示内晶颗粒组建的分级结构对铝基复合材料的增强机制。本项目研究将开发出新型增强体和新型铝基复合材料结构并揭示该复合材料的增强机制,为铝基复合材料的发展提供理论基础与技术支撑。
新型增强体和新型结构是铝基复合材料发展的重要方向,在航空、航天、发动机、交通等领域有广阔的应用前景。本课题采用热爆反应合成法,以Al-TiO2-B2O3、Al-ZrO2-B2O3体系为研究对象,成功合成新型增强体内晶颗粒(α-Al2O3+TiB2)、(α-Al2O3+ZrB2),组建分级结构铝基复合材料(α-Al2O3+TiB2)/Al、(α-Al2O3+ZrB2)/Al。利用DSC、SEM、XRD、EDS、TEM等手段分析反应过程、反应产物,揭示反应机制、增强机制和磨损机制。.Al-ZrO2-B2O3中,体积分数为30%时的反应过程主要分3步。第2、第3分步反应活化能分别为:292.6 与175.4 kJ/mol。在体积分数为50%时,在720℃处增加一分反应,总反应分4步进行,在体积分数为100%时,原第4反应峰分裂成两峰,此为Al2O3的相变峰。.Al-TiO2-B2O3中,体积分数为30%时反应过程主要分3步,第2步、第3步反应活化能分别为255.70和211.68kJ/mol。在增强体体积分数为50%时,反应过程相似,反应活化能分别为328.59和286.03kJ/mol。.影响内晶颗粒形成的主要因素有球磨时间、体积分数和保温时间等。其形成机制为TiB2(Tm=2980℃)和ZrB2(Tm=3040℃)熔点高先凝固,α-Al2O3的熔点低(Tm=2054℃)后凝固,且TiB2和ZrB2与α-Al2O3均为六方结构、界面润湿,能成为α-Al2O3结晶时的核,α-Al2O3以TiB2和ZrB2为核包裹长大,分别形成内晶颗粒(α-Al2O3+TiB2)和(α-Al2O3+ZrB2)。.α-Al2O3与基体铝的润湿性角是118°,在基体中扩散困难,反应高热提高其润湿性,使内晶颗粒在基体中均匀分布。此外,增强体体积分数增加,导致铝熔体粘度增加,增强体颗粒被固液界面推移的距离减小,其分布均匀性提高,从而形成分级结构铝基复合材料。其拉伸强度比基体提高2倍以上,增强机制为奥罗万强化、细晶强化、位错增殖强化、加工硬化强化等机制组合,内晶颗粒因韧性提高在拉伸断裂过程中未现断裂。其磨损机制同样表现为粘着磨损、磨粒磨损及氧化磨损的组合机制。.此外,对Al-SiO2、Al-SiO2-C、Al-Ni2O3、Al-ZrO2等体系进行反应机制研究,进一步丰富了铝基复合材料理论体系。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
农超对接模式中利益分配问题研究
粗颗粒土的静止土压力系数非线性分析与计算方法
低轨卫星通信信道分配策略
铝铜铁准晶颗粒增强镁基复合材料
搅拌铸造法制备石墨烯增强铝基复合材料分级结构及其强韧化机制研究
新型AlCuFe准晶颗粒增强铝基复合材料的复合过程原理研究
SiCp原位自生CNTs增强铝基复合材料的制备与性能研究