Microwave absorption materials have important applications not only in self-concealing technology but also in the increasing civil applications such as microelectronics, high-frequency devices, and radio communications for preventing signal interference, microwave shielding and anti-electromagnetic radiation. With the devolopment of lightweight microelectronic devices with high frequency, the present research results reveal that, microwave absorption materials will be applied in the self-concealing and electromagnetic compatibility fields if only the following issues can be solved. The first issue is that the absorption thickness must be decreased, and the second one is the finding of novel and effective way to regulate the absorption frequency for different microelectronic devices. In this project, our research will be mainly focused on the control of absorption frequency by designing microwave absorborption materials. We will design and fabricate metallic nano-magnet/high dielectric oxide composite thin films through magnetron sputtering method. The magnetic and dielectric losses will be employed to decrease the absorption thickness and enhance the absorption strength. The metallic magnets with different magnetic anisotropic field will be chosen to investigate the variation rule of absorption frequency and find the relationship between magnetic resonance and absorption frequency, realizing the absorption band regulation of microwave absorption materials. This research will develop a new and efficient method for the design and fabrication of microwave absorption materials applied for a variety of microwave devices in different frequency range. Finally, the original results will be acquired on the theoretical research and fabrication method of microwave absorption thin films applied in different frequency.
微波吸收材料不仅在微电子器件、高频电路、无线电通讯技术中抗信号干扰、信号屏蔽和防电磁辐射等方面具有重要应用,也是当今世界各国重点发展的隐身高新技术之一。随着微电子设备趋于轻小型化和高频化发展,现有微波吸收材料研究结果表明,要实现吸波材料在隐身和电磁兼容领域的应用,必须解决两个关键问题:一是减少吸收层厚度;二是针对不同频率的微电子设备,寻求能有效调控吸收频段的方法。本项目拟重点针对后一个问题开展系统研究,采用磁控溅射技术制备金属纳米磁体与高介电氧化物的复合薄膜。利用复合薄膜高磁损耗与高介电损耗协同吸收机制,在实现吸收层厚度薄和吸收强度高的前提下,研究不同金属磁体磁各向异性值与材料吸收频率之间的变化规律,揭示磁共振频率与吸收频段之间的内在联系,探索利用不同磁各向异性值的磁性材料调控微波吸收频段的有效方法。最终在不同频段下适用的微波吸收薄膜材料的理论研究和研制方法上,取得一些创新性成果。
随着电子设备小型化、高频化的发展趋势,现有电磁波吸收材料面临着有效频段低、吸收波段单一、厚度大、易氧化等缺点,本项目选择具有高磁导率和不同磁各向异性值的金属磁体(Ni、Co、Fe、Fe3O4)作为磁性组分,与高介电氧化物(ZnO、MnO、ZrO2、TiO2)复合,利用复合薄膜高磁损耗与高介电损耗协同吸收机制,获得了吸收频段可调、厚度薄、性能稳定的高性能吸波薄膜;在此基础上,构建了电学、磁学、吸波性能的理论模型,深入研究了金属磁体磁各向异性值对吸波频段的调控机理;通过对金属磁体/高介电氧化物界面电子结构研究,揭示复合薄膜材料界面电子传输对材料宏观电、磁性质和吸波性能的影响机制。.通过本项目的实施,验证了金属磁体/高介电氧化物复合薄膜作为吸波介质的设计思想,开发出一系列具有优秀吸波性能的金属磁体/高介电氧化物材料体系,探索出科学调控微波吸收材料吸波频段和提高吸波性能的新方法、新途径,在新型电磁波吸收材料的基础研究和制备方法上,取得了原创性研究成果。.项目发表SCI论文31篇(其中SCI高被引和热点论文5篇),申请相关专利12项,已获得授权4项,超额完成了项目的预定目标。培养博士生8人(在读4人),硕士生13人(在读9人)。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于二维材料的自旋-轨道矩研究进展
电磁可控高效新型Fe/C磁性复合微波吸收材料的研究
磁场协助聚苯胺纳米复合薄膜材料的可控制备及电磁性能研究
磁性金属/C核壳纳米复合材料的制备及其微波吸收研究
有序填充结构陶瓷复合材料的制备及微波吸收性能研究