结构保持暂态能量函数新方法可以克服经典模型过分简化带来的精度问题。本课题对结构保持模型下位能边界曲面上出口点的判据提供了理论证明,拓广了经典模型下的点积判据;本课题运用自动变阶步长的我步阿当姆方法、吉尔方法及牛顿分别求解出口点,最小梯度点及主导不稳定平衡点,在出现求解结果发散时运用阴影方法校正,从而提高了求角主导不稳定平衡点的鲁棒性;本课题运用动态灵敏度方程导出了暂态能量裕度的二阶灵敏度表达式,显著改善了一阶灵敏度方法的精度,优于经典模型的结果,且不依赖于主导不稳定平衡点不变的假定,工程精度达到要求,是一项突破,今后目标是完善详细模型及工程实用化,为电力系统在线动态安全分析作贡献。
{{i.achievement_title}}
数据更新时间:2023-05-31
拥堵路网交通流均衡分配模型
黑河上游森林生态系统植物水分来源
敏感性水利工程社会稳定风险演化SD模型
基于Pickering 乳液的分子印迹技术
地震作用下岩羊村滑坡稳定性与失稳机制研究
基于暂态能量函数与复杂网络理论的电网暂态脆弱性研究
基于暂态能量函数的快速响应储能系统的优化配置研究
基于暂态能量函数法的电力系统暂稳紧急控制的研究
构造新概念暂态能量函数开发电力系统稳定性分析新算法