Marine diesel engine is the most common used prime mover, which is considered as the heart of ships, generating the power for propulsion. Marine diesel engine consists a lot of tribological systems with complex structure, therefore friction and wear faults will occur in many parts and systems during engine operation, decreasing ship safety. Intelligent fault diagnosis can identify faults timely to avoid severe accidents. However, the current intelligent fault diagnostic methods cannot well solve the problems in wear fault diagnosis, including the complexity of wear fault modes, the strong uncertainty in fault diagnosis, and the dynamic variation of fault condition. To solve these problems, this project will choose the main tribological systems of marine diesel engines as research objects, and use dynamic belief rule based inference methodology, concept drift detection and update, and multi-objective optimization to study the intelligent wear fault diagnosis of marine diesel engines: (1) under the power set framework, develop the fault diagnostic model on the basis of belief rule based inference methodology for single and coupling wear faults; (2) update the fault diagnostic model by synthetically using the dynamic belief rule based inference methodology, multi-models integration, and dynamic weight update to response to fault condition drift; (3) propose a multi-objective optimization model synergistically optimizing the structure and parameters of fault diagnostic model to keep a balance between model accuracy and complexity.
船舶柴油机是目前普遍采用的船舶原动机设备,被视为船舶的心脏,为全船提供推进动力。柴油机系统层次多、结构复杂,包含大量的摩擦学系统,导致许多零部件在运行过程中产生摩擦磨损故障,降低船舶的安全性。智能故障诊断能够及时排除故障,预防事故产生,但是面对磨损故障模式复杂多样、诊断中存在强不确定性及磨损故障状态动态变化等问题,当前智能诊断方法显得适应性不足且效果欠佳。因此,本项目以动态置信规则推理为基础,联合概念漂移检测与更新、多目标优化等方法,以船舶柴油机主要摩擦学系统为对象,开展船舶柴油机磨损故障智能诊断研究:(1) 在幂集辨识框架下,建立适用于单一、耦合故障的置信规则推理诊断模型;(2) 综合采用动态置信规则推理建模、多模型集成和动态权重更新机制实现诊断模型更新,从而对故障状态漂移进行响应; (3) 提出静、动态磨损故障诊断模型结构与参数协同的多目标优化方法,提高诊断准确性,并控制模型复杂性。
船舶柴油机是目前普遍采用的船舶原动机设备,被视为船舶的心脏,为全船提供推进动力。柴油机系统层次多、结构复杂,包含大量的摩擦学系统,导致许多零部件在运行过程中产生摩擦磨损故障,降低船舶的安全性。为提升船舶柴油机的运行可靠性,保证船舶运行的安全,本项目以船舶柴油机主要摩擦学系统为对象,开展船舶柴油机磨损故障智能诊断研究:(1) 在幂集辨识框架下,建立适用于单一、耦合故障的置信规则推理诊断模型;(2) 综合采用动态置信规则推理建模、多模型集成和动态权重更新机制实现诊断模型更新,从而对故障状态漂移进行响应; (3) 提出静、动态磨损故障诊断模型结构与参数协同的多目标优化方法,提高诊断准确性,并控制模型复杂性。通过建立多分类器融合模型,研究自定义属性权重BRB的并行故障诊断方法,实现了对船舶柴油机单一和耦合故障的诊断;采用基于混合自适应窗口对故障诊断中产生的状态漂移进行检测,并通过采用递归证据更新方法和动态更新策略实现模型的更新;在主导从属框架下建立了变结构置信规则库的多目标优化模型实现模型参数和结构的协同优化,并采用平行多种群和冗余基因的策略进行多目标优化模型的求解。本项目的研究成果适用于船舶动力系统乃至复杂机械系统的单一和耦合故障的诊断,能够描述故障诊断中存在的多种不确定性,适应于故障状态的动态变化。由于置信规则推理的诊断过程透明、结果具有可解释性和可追溯性,能够提高故障诊断的智能化水平,并对其他设备类似故障诊断问题具有借鉴和参考价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
内点最大化与冗余点控制的小型无人机遥感图像配准
基于分形维数和支持向量机的串联电弧故障诊断方法
基于FTA-BN模型的页岩气井口装置失效概率分析
基于全模式全聚焦方法的裂纹超声成像定量检测
基于参数和结构优化的置信规则库推理方法研究
基于置信规则库推理方法(RIMER)的院前创伤评估决策支持系统研究
基于生成对抗网络的动态系统智能故障诊断方法研究
基于动态不确定因果图的复杂系统故障诊断推理与决策方法研究