Traditional filter membranes have low separation precision and easy fouling, which limit their application in bio-separation, due to lack of molecular design. Inspired by the selective transport of the biological channels and the anti-fouling of the glomerular membrane, the key factors contributing to these excellent performances will be transferred from the biological systems to their artificial counterparts, to synthesize the bio-inspired membranes for bio-separation. Firstly, with the design inspired by bio-channels and the glomerular membrane, track-etched membranes with pores on nanometre and micrometre scale, will be functionalized to improve their charge density and hydrophilicity. The effect of membrane pore size, charge property and hydrophilicity on protein separation efficiency and anti-fouling property will be then analysed via the performance of the modified membranes in the pressure-driven and electro-driven bio-separation systems. Based on the optimized conditions for bio-inspired functionalization, the track-etched membranes with nano-pores and micro-pores will be modified individually, and then combined together in a double-channel device. Relied on the rectification of the double-channel to charged species, the protein separation will be achieved in the electro-driven system and optimized by the bio-inspired functionalization. This project will provide more efficient, customized, simple and feasible bio-inspired membrane design to meet the requirement of the bio-separation. Also, it will spark novel ideas for the application of track-etched membranes in bio-separation.
传统过滤膜由于缺乏分子层面上的设计而使其分离精度较低且易结垢,进而限制了其在生物分离领域的应用。本项目受生物孔道的选择输运性和肾小球膜的抗结垢性的启发,拟将决定其特殊功能的关键因素移植到人工体系,以构建可以满足生物分离需求的膜材料。首先,以微纳米径迹刻蚀膜为模板,仿照生物孔道、肾小球膜对膜材料进行电荷密度改性以及亲疏水性基团接枝修饰。然后,在压力驱动和电驱动的生物分离系统中,分析膜孔尺寸、孔道电性和亲疏水性对于蛋白质分离效率以及抗结垢性的影响。结合以上优选出的修饰参数对孔径不同的微纳米孔膜进行电性及亲疏水性基团的修饰并组合,再借助仿生双孔膜的离子整流性来进一步改善其在电驱动蛋白质分离中的效率。本项目将为生物分离领域提供更高效、个性化且简便可行的仿生膜设计方案,也将为径迹刻蚀膜在生物分离领域的应用提供新的思路。
传统膜材料存在分离精度较低且容易污损的缺点,限制了其在生物分离领域的应用。本项目受生物孔道选择输运性和肾小球膜抗污性的启发,将仿生功能的关键因素移植到人工体系,设计制备了可以满足生物分离需求的膜材料。本项目以径迹刻蚀膜为基底材料,从以下三方面进行了研究:.(1)肾小球膜具有抗非特异性蛋白质吸附的优异性能,这来源于其膜表面糖萼等糖蛋白复合物提供的亲水性能与静电排斥作用。通过研究基于亲水性与静电双重作用的仿生膜在抗蛋白质结垢方面的表现,揭示了亲水和带电基团与功能分子抗蛋白质吸附性能的关系,为选择或合成抗结垢功能分子提供了策略和依据。.(2)静电和催化作用是影响生物孔道特异选择性和功能性的关键因素,但仅依靠径迹刻蚀孔道难以提供类似于生物孔道的选择性和催化活性。将静电纺丝与水热原位生长相结合制备具有多级结构的纳米纤维膜层,与径迹刻蚀膜基底形成复合膜,阐明了纳米纤维多级结构形成的机制以及纳米纤维组分对复合膜吸附分离与催化性能的关系,优化了复合膜的分离与催化性能。.(3)针对径迹刻蚀膜孔径较大、难以有效截留中小分子量物质的缺点,设计制备了由天然材料构成的功能膜层,并与径迹刻蚀膜复合构成仿生双孔分离膜。阐明了分离层杂化组分种类与配比对双孔膜片层型纳米通道结构的影响及其与分离性能的构效关系,拓展开发了天然材料与径迹刻蚀膜所构成的双孔膜在生物分离中的应用。.上述研究结果为生物分离领域提供更高效、个性化且简便可行的仿生膜设计方案,也为径迹刻蚀膜在生物分离领域的应用提供了更多新思路。.
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
面向云工作流安全的任务调度方法
自组装膜在纳米刻蚀领域中的应用
红外杂化光谱及其在光谱分离领域的应用
IV-型胶原蛋白二维有序多肽结构的仿生合成及其功能化体系在生物材料领域的应用探索
全陶瓷疏水膜孔隙结构设计及在膜分离领域的应用基础研究