Photocatalytic oxidation desulfurization of fuel oils has attracted increasing attention and research due to its high efficiency and clean reaction process . However, the use of UV light as light source restricts its utilization in industry. BiOBr photocatalyst has certain visible light catalytic performance, however, it also has some disadvantages such as the low adsorption of pollutants and low quantum efficiency. In this research, porous carbon materials with suitable porous structure and surface would be chosen as the carrier, and BiOBr-based hybrid photocatalysts would be loaded on its surface. In this way, high effeciency degradation of sulfur-containing compounds will be achieved via photocatalytic oxidation coupled with adsorption. Changing the selective adsorption of sulfur-containing compounds on supports by controling the porous structure and surface. The formation of BiOBr heterojunction would increase its quantum efficiency. The seperation and transfer mechanism of photo-induced carriers will be proposed through invesitigating of photocatalytic abilities with the construction of hybrid materials, and active oxidant species in the reaction process. Photocatalytic reaction mechanism over BiOBr-based hybrid photocatalysts will be proposed. Base on above, the synergistic effects of desulfurization between adsorption caused by porous carbon supports and the photocatalytic effect induced by photocatalyst will be studied and discussed. The degradation route and mechanism of sulfur-containing compounds under adsorption and photocatalysis will be investigated. This project will provide idea for development of high-efficience visible-light driven photocatalysts and desulfurization absorbent, and provide reference for deep desulfurization of fuel oils in industry.
光催化氧化燃料油脱硫技术以其高效、清洁等优点而受到关注,但其多利用紫外光源,使其应用受到限制。BiOBr具有较好的可见光催化性能,但也存在光量子效率较低和对有机物吸附弱的缺点。本课题拟筛选孔结构和表面可控的多孔碳作为载体,遴选与BiOBr能带结构匹配的半导体材料构筑多孔碳负载BiOBr系异质结复合脱硫剂,通过吸附耦合光催化技术实现可见光下的燃料油深度脱硫。通过调节载体碳材料的孔结构、表面态等改变催化剂对有机硫化物的选择吸附性能,通过构筑异质结提高BiOBr催化剂的光量子效率,考察不同异质结材料的光致活性物种及光催化活性,阐明异质结材料界面光生载流子分离及迁移机制,提出其光催化机理,建立异质结材料组成及结构和活性间的构效关系;考察复合脱硫剂在吸附含硫化合物与光催化过程中的协同效应,探讨协同作用下含硫化合物降解途径与机理。本研究旨在开发新型高效可见光催化吸附脱硫剂,为燃料油深度脱硫提供参考。
催化氧化燃料油脱硫技术以其高效、清洁等优点而受到关注,但其多利用紫外光源,使其应用受到限制。BiOBr具有较好的可见光催化性能,但也存在光量子效率较低和对有机物吸附弱的缺点。本课题筛选孔结构和表面可控的多孔碳作为载体,遴选与BiOBr能带结构匹配的半导体材料构筑多孔碳负载BiOBr系异质结复合脱硫剂,通过吸附耦合光催化技术初步实现了可见光下的燃料油深度脱硫。研究了异质结的构筑、表面修饰等因素BiOBr光生载流子分离和传输的影响;明确了BiOBr被修饰后光致氧化物种的变化,以及BiOBr的修饰对光生载流子传输机制的影响和光催化氧化活性之间的关系。通过表面改性提高了碳材料对有机硫化物的吸附性能;构筑了负载型BiOBr可见光催化脱硫剂,研究了含硫化合物在复合催化剂表面的吸附-光催化氧化降解途径及机理。在项目的资助下,超额完成计划书中的相关论文数量,以第一作者或通讯共发表SCI收录论文8篇,其中影响因子3.0以上6篇;申请发明专利2项,培养硕士研究生4名。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
丙二醛氧化修饰对白鲢肌原纤维蛋白结构性质的影响
动物响应亚磁场的生化和分子机制
三级硅基填料的构筑及其对牙科复合树脂性能的影响
无定形Al2O3基异质结纳米粉体负载离子液体吸附耦合光催化氧化脱硫研究
BiVO4/复合金属氧化物异质结的构筑及光催化脱硫性能研究
煤液化残渣基介孔碳负载型中高温煤气脱硫剂微波脱硫机理
多孔氧化铝/铋系异质结原位构建及其吸附富集/光催化降解VOCs机制研究