In view of the low transition efficiency and output power density in the micro-thermophotovoltaic system, this project choose a new planar type micro heat-recirculating combustor as research subject which packing porous media, its combustion characteristics and strengthening mechanism will be obtained by joining the methods of theoretical analysis, experiment test and numerical simulation. The specific contents are as follows:Comparative experiments of combustion limit and flame characteristic about two planar type micro heat-recirculating combustors which with and without porous media will be done through the technology of PLIF, infrared thermograph and high-speed camera, and the coupling combustion mechanism of heat-recirculating and porous medium will be elaborated in detail by incorporating simulation results which considering the effect of heat storage radiation in the porous media; The influence of structure and operation parameters on combustion condition and wall radiation of this new type combustor should be grasp, and the optimum reaction condition for the micro-thermophotovoltaic system will be obtained; A more accurate energy transition model will be built by overall consideration of system integral package, real cooling and back surface reflect of photoelectric cell, so as to explain the action of improving working performance by using heat-recirculating combustion with porous media more deeply. The relevant research achievements will enrich strengthening mechanism of micro scale combustion,and lay a solid foundation for widely used of this system as early as possible.
针对微型热光电系统整体转化效率和功率输出尚不够高的问题,本项目以一种新型的填充多孔介质的微尺度平板式回热燃烧器作为研究对象,采用理论分析、实验测试和数值模拟相结合的方法,对其燃烧特征和强化作用机理进行研究。具体包括:采用有无多孔介质的两种平板式回热型燃烧器,利用PLIF、红外热像和高速摄影等技术进行燃烧极限、火焰特性的对比实验,并结合考虑多孔介质蓄热辐射效应的数值模拟计算结果,详细揭示微尺度多孔介质促进作用下回热燃烧方式的耦合作用机理;掌握重要结构和运行参数对新型燃烧器燃烧状况和壁面辐射效应的影响规律,获得适用于微型热光电系统工作的燃烧器最佳反应条件;通过对系统整体封装、电池实际冷却和背面反射的综合考虑,建立更为精确的系统能量转换计算模型,以更深入地阐述填充多孔介质的回热燃烧方式对系统工作性能提升的作用。相关研究成果将丰富微尺度燃烧的强化机理,并为该系统尽早得到广泛应用打下坚实的基础。
作为一种典型的微型动力装置,微型热光电系统结构相对简单、没有运动部件、制造装配也容易,故优势相对其他装置也较为明显。微型燃烧器是该系统最为重要的部件,它的设计好坏不仅会对内部燃烧过程的稳定性造成影响,而且其外壁面的温度分布状况还会直接影响到系统的输出性能。为此,本项目提出了一种平板式多孔介质回热型微燃烧器的设计思路,并结合实验测试和数值模拟的方法,对其燃烧特征和强化作用机理展开了研究。按照计划任务书,首先,选用氢气、甲烷和丙烷这三种常见的碳氢燃料,对比了它们在平板式直通道微型燃烧器内火焰位置、化学能的利用程度、燃烧极限等方面的差异。随后,针对直通道燃烧器的不足,设计并加工了多种结构的回热型微燃烧器。通过测试结果的对比获得了最佳结构型式,并揭示了该燃烧器在提高火焰温度、固定火焰位置等方面的作用机理,获取了混合气流量、当量比等最佳运行条件,以及隔板长度等最佳结构参数。最后,为了进一步提高回热型燃烧器的工作性能,我们在进气通道内填充了多孔介质,并分析了多孔介质在延长驻留时间、提高化学能利用率等方面的促进作用。在本课题的开展过程中,除回热型燃烧器外,我们还设计了多种其它的优化结构型式(如内置十字隔板的微型燃烧器等),分析了各自的燃烧特性和工作表现。此外,针对针对甲烷(丙烷)/空气预混气体在微通道内燃烧困难以及可燃流速范围过窄的问题,还提出了在混合气中掺杂少量氢气的燃料设计方案,并分析了具体的实施效果。项目执行期间,共发表学术论文14篇,其中SCI检索论文6篇,EI检索论文4篇;申请国家发明专利14项,其中1项已获得授权;参加国内外学术会议3次。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
钢筋混凝土带翼缘剪力墙破坏机理研究
基于二维材料的自旋-轨道矩研究进展
水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应
感应不均匀介质的琼斯矩阵
部分填充多孔介质的平板微燃烧器的稳燃特性及耦合传热机理研究
新型多孔介质燃烧器特性研究
新型双层多孔介质微小燃烧器自输运液膜燃烧机理研究
碳氢燃料在微燃烧器内自热催化重整与燃烧特性研究