Most of small molecule antitumor drugs have poor aqueous solubility, short circulation halftime and low bioavailability. PEGylation, covalent attaching polyethylene glycol (PEG) polymers to therapeutic compounds, is one of the most promising techniques to improve the biological efficacy of drugs. PEGylated molecules demonstrate enhanced solubility and stability. So far, many PEGylated drugs have been taken into clinical trials. Doxorubicin, sold under the trade names Adriamycin among others, is a medication used in cancer chemotherapy. Common adverse effects of doxorubicin include hair loss, myelosuppression , nausea and vomiting, oral mucositis and so on. PEGylation of doxorubicin could improve the biological efficacy and reduce the adverse effects of doxorubicin.The clinical development of PEGylated drugs requires accurate and robust methods for the qualitative and quantitative analysis of intact PEGylated molecules and the released compound in biological samples.However, owing to the heterogeneous nature of PEG, the mass of PEG or PEGylated molecules are uncertain, direct quantification of PEG or PEGylated drugs is challenging. Therefore, pharmacokinetic study of PEGylated drugs is very difficult due to the lack of effective analytical tools. In this study, we describe LC-Q/Q/Tof MS methods coupled with In-Quadrupole CID that can be utilized for the detection and measurement of PEGylated pharmaceuticals and the released compound in complex biological samples for comparative pharmacokinetic study of doxorubicin and PEG-doxorubicin. The method utilizing LC-MS/MS coupled with In-Quadrupole CID that is highly selective and sensitive to PEGylated compounds.PEGylated molecules undergo dissociation in the second Quadrupole of mass spectrometer to generate a series of high resolution. Via the LC-Q/Q/Tof MS methods coupled with In-Quadrupole CID, this research would study the Pharmacokinetic behavior of doxorubicin, mutiplescale PEG-doxorubicin, released PEG and their metabolites, also provides a powerful analysis tool and data theoretical support for the design and safety, effectiveness evalution of PEG-doxorubicin and PEGylated drugs.
多数小分子抗肿瘤药物水溶性差、循环半衰期短、生物利用度低,聚乙二醇修饰技术能够改善药物的药效学特性,是目前化学修饰的研究热点,具有很好的前景。阿霉素,是癌症化疗中经常使用的药物。不良反应包括脱发,骨髓抑制,恶心和呕吐,口腔粘膜炎等。PEG化阿霉素,能够提高生物活性的同时,降低其不良反应。PEG化药物的开发,需建立能够分析完整药物本身及释放药物的准确耐用的分析方法。但是,由于PEG化药物的分子量不唯一,直接分析挑战很大。由于缺少有效的方法,基于完整药物和释放药物水平的药代动力学研究很难进行。本课题拟通过建立分析PEG化药物和释放药物的CID In-Quadrupole的LC-Q/Q/Tof MS方法,进行阿霉素和PEG化阿霉素的比较药代动力学研究,就PEG化阿霉素,释放阿霉素、游离PEG进行系统性的研究,为PEG化阿霉素及PEG化纳米药物的开发及有效性评价提供分析工具和数据理论支撑。
PEG修饰能够改善小分子药物的很多缺陷,但是PEG修饰之后,PEG化小分子药物体内的药代动力学行为仍然需要精准的监控,这对于PEG化药物的开发是十分重要的。本课题以PEG化阿霉素为研究对象, 建立了能够分析PEG化阿霉素、释放阿霉素和游离PEG的基于CID In-Quadrupole的LC-Q/Q/Tof MS方法, 进行了阿霉素和PEG化阿霉素的比较药代动力学研究, 从整体动物、组织、细胞水平系统研究PEG阿霉素的药动学行为。药代动力学研究结果表明, PEG修饰能够显著降低血浆中游离阿霉素的C0和Cmax浓度,降低阿霉素的毒副作用,同时能够延长PEG化阿霉素在体内的循环时间。组织分布研究表明:PEG化修饰能够提高PEG化阿霉素在肿瘤组织内的分布,药效维持的时间更长,但由于游离药物浓度较低,短期内药效可能不会显著的提高;PEG修饰降低了阿霉素在心脏、肾脏、肺、脾、生殖器官和脑中的分布,减小了对正常组织的毒性,安全性更好。代谢和排泄实验表明:PEG化阿霉素在体内可以代谢成阿霉素、PEG,从而以PEG化阿霉素、阿霉素、游离PEG的形式排出体外,肾排泄是其排泄的主要形式。细胞药代动力学结果进一步表明阿霉素经PEG修饰之后能够起到缓释的效果。
{{i.achievement_title}}
数据更新时间:2023-05-31
转录组与代谢联合解析红花槭叶片中青素苷变化机制
面向云工作流安全的任务调度方法
敏感性水利工程社会稳定风险演化SD模型
TGF-β1-Smad2/3信号转导通路在百草枯中毒致肺纤维化中的作用
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
单抗-阿霉素交联物在实验动物体内药代动力学研究
转运体介导乌苯美司发生药物相互作用和抗阿霉素多药耐药的分子药代动力学机制
基于p53动力学的阿霉素PK/PD结合研究
基于Massall技术的从亚细胞到整体水平的PEG化吉西他滨药代动力学研究