The drying technique for heat-sensitive and high-viscosity natural biopolymers is a difficult problem in modern drying technology. Traditional drying methods will lead to the loss of activity or changes of physical properties. Ultrasound assisted vacuum drying technology for food drying has many advantages including low energy consumption, short drying time, effective preservation of food nutrients and other good characteristics. But ultrasonic cavitation energy reduces quickly because the bubbles are prolapsed during the ultrasonic process and lead to ultrasonic cavitation decrease, and ultrasonic energy radiation area is short in the solution, the energy is decayed significantly in the liquid system containing materials. These ultrasonic defects limit the application of ultrasound wave in food industry. To solve these problems, this project intends to study the effects of the synergic drying by using the periodical change of CO2 pressure with ultrasound technology on the quality of Lycium barbarum polysaccharides. The dynamic process of "staleness to dissolve gas - ultrasound relief out gas" is used to achieve the purpose of "CO2 drying - ultrasonic cavitation drying" synergistic effect. The drying mechanism will be explained based on the process control of vacuum pulsation ultrasonic drying and the moisture migration rule. In addition, the relevant mathematical of the polysaccharide drying process models will also established. This project will provide a new theoretical basis of “non-thermal drying technology” in food industry. The expectant results of this research projects will also provide a scientific basis for other heat-sensitive and high-viscosity natural biopolymers and relevant large-scale equipment development.
热敏性、高粘度天然生物聚合物的干燥是现代干燥技术中的一个难题。传统干燥方式会导致该类物质活性丧失或物理性能改变。超声波耦合真空干燥技术用于食品干燥具有能耗低、干燥时间短、有效保存食品营养成分等优点。但超声波处理过程随着空化气泡的消除,超声空化作用逐渐降低,以及超声能量在溶液体系中辐射距离较短,在含有物料的体系中衰减显著等问题成为该技术应用推广的一大壁垒。为此,本项目拟在低温条件下,采用真空脉动耦合超声干燥技术对枸杞多糖的干燥效果进行研究,并将CO2引入干燥体系,利用“泄压溶气-超声释气”动态过程实现“CO2-超声空化干燥”协同增效的目的,通过研究超声干燥的过程控制及水分迁移规律来解释干燥机理,并建立干燥过程的数学模型,为非热力干燥技术提供新的理论基础。项目预期研究成果对于该技术在其它热敏性、高粘度天然生物聚合物的干燥及设备研发等领域的应用具有重要意义。
对胡萝卜、玛咖、肉苁蓉等根茎类和高粘性枸杞多糖干燥进行了研究,并与其它干燥方法进行了对比,为超声真空干燥的推广应用提供理论基础。超声真空干燥可提高胡萝卜片有效扩散系数,并得到品质好的胡萝卜干片。利用热风干燥、真空干燥和不同功率超声真空干燥(300/500/700 W)对胡萝卜进行处理,有效扩散系数由低到高依次为真空干燥(3.96×10-10 m2/s)、热风干燥(8.07×10-10 m2/s)、700 W超声真空干燥(8.58×10-10 m2/s);Midilli et al.模型能很好地描述和表达超声真空干燥过程含水率比的变化规律;响应面设计得到胡萝卜片最优超声真空干燥条件为:超声功率500 W,真空度99.89 kPa,干燥温度23.73℃,此时干燥4小时后干基含水率最小为0.868;利用低场核磁技术测定胡萝卜超声真空干燥过程前60 min水分变化,0~20 min内自由水含量显著减少,且总信号幅值下降快,20~60 min胡萝卜中主要为半结合水的脱除;超声真空干燥的胡萝卜片颜色最鲜亮,产品形变最小,内部形成均匀微小孔道,复水比最高;在一定范围内,超声功率越大,形成的微小孔道数量越多,孔径越大。超声真空干燥促进玛咖片干燥过程的水分迁移,并有利于玛咖酰胺的合成。采用与胡萝卜相似研究方法对玛咖片进行干燥。0~700 W 范围内,超声功率增大,干燥后的玛咖微小孔道数量越多,孔径越大,玛咖干片的复水比越高。干燥温度20~40°C范围内,干燥温度升高可促进肉苁蓉片的超声真空干燥。在超声功率700 W,真空度100 kPa条件下研究温度对肉苁蓉片超声真空干燥的影响。 Midilli et al. 模型可较好的描述肉苁蓉的超声真空干燥过程;肉苁蓉超声真空干燥的有效扩散系数分别为2.66 m2/s(20°C)、3.24 m2/s(30°C)、3.65 m2/s(40°C);与热风干燥和真空干燥相比,超声真空干燥不利于松果菊苷和毛蕊花糖苷的保留。超声真空干燥可缩短枸杞多糖干燥时间。利用热风干燥、冷冻干燥和超声真空干燥(700 W)对枸杞多糖进行处理,枸杞多糖的干燥时间由短到长分别为冷冻干燥<超声真空干燥<热风干燥;超声真空干燥得到的枸杞多糖颜色鲜亮,质地疏松,糖损失量小。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
超声波协同下的木材真空过热蒸汽干燥水分迁移机制
高频真空干燥过程中木材热质耦合传递规律的研究
浸渍改性材干燥过程中水分迁移与树脂固化交互作用机制研究
褐煤低温氧化过程中水分对氧在煤表面迁移规律影响的机理研究