Nearly all hydrocarbon reservoirs are affected in some way by natural factures, yet the effects of fractures often result in strong heterogeneity and multi-scale characteristics. The present reservoir simulators are mainly based on the dual-porosity model or equivalent continuum model. However, these two models are too simplification at macro-scale to depict the multi-scale flow characteristic. The discrete fracture model is suggested due to its high calculation precision and more realistic results. However, it is rarely possible to be used for real oil-field problem because of its tremendous amount of computation by using present numerical methods. To this end, we propose an efficient multi-scale numerical scheme to discrete fracture model based on mixed multi-scale finite element method. In this numerical scheme, only coarse grids are generated, and the multi-scale basis functions are developed to capture the detailed micro-scale information. The macro-scale solutions are obtained by the global formulation, and then the micro-scale flow solutions can be obtained by using the multi-scale basis functions. Therefore, it can capture the small-scale effect on the large scales, but requires less amount of calculation. Furthermore, the computation time can be relieved by parallel computing. The corresponding lab experiments of two-phase flow are designed to verify the validity of the numerical scheme and parallel program. At the end, an efficient multi-scale numerical simulation theory and method will be developed for fractured reservoirs, which are suitable to the realistic discrete fracture model from the oil-field.
裂缝性油藏分布广、储量大,但具有强烈的非均质性和多尺度性。现有数值模拟主要基于双重介质和等效介质模型,但这两种模型过于宏观简化,均不能刻画其多尺度流动特征。离散裂缝模型虽具有计算精度高、拟真性好的优点,但对于此类多尺度流动问题,传统数值方法面临计算量大的瓶颈,仍难以应用于实际。对此,本项目将多尺度混合有限元引入到离散裂缝流动模拟中。该方法仅需在宏观尺度上进行粗网格剖分,通过在粗网格上求解局部微分方程来构造其多尺度基函数,把小尺度裂缝信息反映到多尺度基函数中,从而在获取大尺度解的同时也包含了小尺度信息,旨在降低计算量的同时捕捉小尺度流动特征,克服传统数值方法的缺点。结合并行算法,编制计算程序,进一步提高计算效率;并基于物理实验模拟来验证方法和程序的正确性。最终形成一套裂缝性油藏多尺度精细流动模拟理论与方法,为裂缝性油藏的高效开发提供技术支持。
裂缝性油藏分布广、储量大,具有很高的研究价值和意义。但裂缝性油藏具有强烈的非均质性和多尺度性,给数值模拟带来巨大挑战。现有数值模拟主要基于双重介质和等效介质模型,但这两种模型过于宏观简化,均不能刻画其多尺度流动特征。离散裂缝模型虽具有计算精度高、拟真性好的优点,但对于此类多尺度流动问题,传统数值方法面临计算量大的瓶颈,仍难以应用于实际。对此,项目将多尺度计算方法和离散裂缝模型有机结合了起来,首先对流动区域进行多尺度网格划分,在粗网格上求解局部精细流动问题,并通过构建粗网格多尺度基函数,反映介质中精细的裂缝信息,在保证计算精度的同时大幅减少了计算量,节省了计算内存,计算效率提高30%左右。通过本项目的研究,最终形成了一套缝性油藏多尺度精细流动模拟理论与方法,能够解决大规模裂缝性油藏精细数值模拟问题,并可以应用至地下水文学、地下核废料处理等其他领域。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
监管的非对称性、盈余管理模式选择与证监会执法效率?
粗颗粒土的静止土压力系数非线性分析与计算方法
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
多尺度离散裂缝油藏有限元数值模拟研究
混凝土坝体裂缝多尺度研究与数值模拟
基于离散裂缝模型的低渗透油藏压裂水平井流动模拟研究
基于梁-颗粒与有限元耦合模型的沥青加铺层反射裂缝多尺度数值分析