The wide band-gap semiconductor based detector has been the international research focus of nuclear radiation detection, space exploration, and radiology due to the super ability of anti-radiation and sub-nanosecond response. However, many basic scientific problems of such devices on material physics, device process and integration of electronics need to be resolved. The proposed project will make breakthroughs in the field of new generation nuclear radiation detector and the integrated technology of nuclear electronics based on the third generation semiconductor material gallium nitride (GaN). The growth and doping techniques will be optimized using kinetics modulated methods to obtain the breakthrough development of high-quality, high-resistance and low-density-of-impurity GaN substrate. The influence of polarization, deep energy level, surface state and radiation damage on the generation, scattering, recombination and mobility of non-equilibrium carriers will be studied systematically. Thereafter, the critical techniques of device process of GaN based nuclear radiation detector will be penetrated, and the mechanisms of damage and degradation of such material and device will be studied. In addition, the proposed project will focus on the fabrication of GaN based high electron mobility transistor (HEMT) and the study of electronic techniques. On these bases, the critical technical problems of integration of GaN based nuclear radiation detector and the circuit of GaN nuclear electronics will be resolved. As a result, the integration of GaN based nuclear radiation detector and HEMT will be accomplished, which will promote the development of high-sensitive wide band-gap semiconductor based radiation detector related technology of our country.
宽禁带半导体探测器由于具有超强抗辐照能力和亚纳秒的时间响应,已成为当前国际核辐射探测、空间探索和放射医学领域研究的热点。但是这类器件在材料物理、工艺制备以及电子学集成等方面,仍面临一系列基础科学问题急需突破。本项目立足于第三代半导体材料氮化镓(GaN),围绕新一代核探测器及核电子学集成技术展开攻关。采用动力学调控手段优化材料生长及掺杂工艺,突破高质量、高电阻、低杂质浓度的GaN单晶衬底制备技术;系统研究材料中的极化、深能级及表面态、辐射损伤等对非平衡载流子的产生、散射、复合及迁移特性的影响规律;攻克GaN核探测器关键工艺技术,研究GaN材料及器件在强辐射条件下的损伤及老化机理;开展基于GaN高电子迁移率晶体管(HEMT)器件的制备及电子学技术。在此基础上突破GaN探测器与GaN核电子学电路集成面临的技术难题,实现GaN核探测器与HEMT器件集成,推动我国高灵敏宽禁带半导体核探测技术的发展。
宽禁带半导体探测器由于具有超强抗辐照能力和亚纳秒的时间响应,已成为当前国际核辐射探测、空间探索和放射医学领域研究的热点。但是这类器件在材料物理、工艺制备以及电子学集成等方面,仍面临一系列基础科学问题急需突破。本项目立足于第三代半导体材料氮化镓(GaN),围绕新一代核探测器及核电子学集成技术展开攻关。采用动力学调控手段优化材料生长及掺杂工艺,突破高质量、高电阻、低杂质浓度的GaN单晶衬底制备技术;系统研究材料中的极化、深能级及表面态、辐射损伤等对非平衡载流子的产生、散射、复合及迁移特性的影响规律;攻克GaN核探测器关键工艺技术,研究GaN材料及器件在强辐射条件下的损伤及老化机理;开展基于GaN高电子迁移率晶体管(HEMT)器件的制备及电子学技术。在此基础上突破GaN探测器与GaN核电子学电路集成面临的技术难题,实现GaN核探测器与HEMT器件集成,推动我国高灵敏宽禁带半导体核探测技术的发展。
{{i.achievement_title}}
数据更新时间:2023-05-31
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
极地微藻对极端环境的适应机制研究进展
粉末冶金铝合金烧结致密化过程
采煤工作面"爆注"一体化防突理论与技术
强电磁脉冲诱导氮化镓高电子迁移率晶体管多物理效应机理与规律研究
面向太赫兹应用的氮化镓基谐波增强型高电子迁移率晶体管研究
氮化镓基高电子迁移率晶体管-微悬臂梁力电耦合机制及结构制造的研究
氮化镓基高空穴迁移率晶体管材料与器件研究