The condensation and reheating method can remove the water and pollutants from wet flue gas and eliminate the colored smoke plume with low energy consumption, which is an important way to deeply reduce the emissions from coal-fired power plants. The energy transfer, migration and transformation of water and pollutants in the process of condensing and reheating are the key factors that determine the removal efficiency and energy consumption. However, there are deficiencies in the current research on the migration and transformation mechanism of water and pollutants and the energy transport characteristic during the condensing and reheating process. The methods of experimental investigation, theoretical analysis, and procedure simulation will be adopted to study the microscopic behaviors (condensation, reaction, separation, decomposition, diffusion, etc.) of water and pollutants during the condensing and reheating process. The detailed physical/chemical migration and transformation laws of water and pollutants will be obtained, and the synergistic removal mechanism of water and pollutants will be revealed. The energy absorption/release characteristics of the migration and transformation behaviors will be explored. The complementary relationship between the microscopic behaviors and the macroscopic heat transfer process will be investigated, and the multi-scale coupled energy transport mechanism in the pollutant removal process will be revealed. Based on the laws of the temporal and spatial transformation of water and pollutants and their energy transport, in conjunction with the microscopic behaviors and the macroscopic heat exchange process, the energy cascade using energy-saving mechanism during the whole process will be illustrated. And the dynamic synergistic optimization method for the deep removal of pollutants and multi-source heat utilization will be proposed. This project will enrich the thermodynamic theory system of multiphase continuous phase transition processes, and provide important theoretical support for the deep energy-saving and emission reduction technology of wet flue gas from coal-fired power plants.
冷凝再热法可低能耗脱除湿烟气中水分和污染物并消除有色烟羽,是燃煤机组深度减排的重要途径。冷凝再热过程中水分和污染物的能质迁移转化特性是决定脱除效率及能耗的关键因素,而目前国内外针对水分和污染物迁移转化机理及能量输运机制的研究尚不完善。本项目通过现场实验、理论分析、流程模拟等手段,研究冷凝再热过程中水分和污染物的凝结、反应、分离、分解及扩散等微观行为特性,揭示详细物理/化学迁移转化机理,阐明水分和污染物的协同脱除机制;探究迁移转化行为的能量吸收/释放特性,分析微观行为与宏观换热过程的能质互补关系,明确污染物脱除过程多尺度耦合能量输运机理;基于水分和污染物时空转化及能量输运规律,阐释微观行为与宏观换热相协同的全过程能量梯级利用节能机理,提出污染物脱除与多源热利用动态协同优化方法。本项目研究成果将丰富多相状态连续相变过程热力学理论体系,为燃煤机组湿烟气深度节能减排技术提供重要理论支撑。
冷凝再热法可低能耗脱除湿烟气中水分和污染物并消除有色烟羽,是燃煤机组深度减排的重要途径。冷凝再热过程中水分和污染物的能质迁移转化特性是决定脱除效率及能耗的关键因素,而目前国内外针对水分和污染物迁移转化机理及能量输运机制的研究尚不完善。.本项目通过现场实验、理论分析、流程模拟等手段,研究冷凝再热过程中水分和污染物的凝结、反应、分离、分解及扩散等微观行为特性,揭示了详细物理/化学迁移转化机理,阐明了水分和污染物协同脱除机制;探究迁移转化行为的能量吸收/释放特性,分析微观行为与宏观换热过程的能质互补关系,明确了污染物脱除过程多尺度耦合能量输运机理;基于水分和污染物时空转化及能量输运规律,阐释了微观行为与宏观换热相协同的全过程能量梯级利用节能机理,提出了污染物脱除与多源热利用动态协同优化方法。.本项目按照任务书执行,总体进展顺利,研究目标的完成度较好。本项目研究成果丰富了多相状态连续相变过程热力学理论体系,为燃煤机组湿烟气深度节能减排技术提供了重要理论支撑。此外,本项目研究中所凝练的针对中低温热源的流场协同方法和能量梯级利用理论,在电站尾部烟道优化、固体废弃物资源化利用等相关领域进行了交叉开拓应用,增益了本项目的研究价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
路基土水分传感器室内标定方法与影响因素分析
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
高湿烟气降温冷凝过程中细颗粒物凝并长大及脱除特性研究
路基土的水分扩散和冷凝迁移及路基软化机理研究
燃煤电厂烟气污染物协同控制过程多环芳烃的赋存特征和迁移转化机理研究
大气作用下黄土路基水分迁移规律及增减湿变形特性研究