A new method of non-physical contact type controllable permanent magnet eddy current magnetic coupling transmission is proposed in this project, which can control multidimensional magnetic coupling stiffness on-line. It has many advantages such as large allowable misalignment (up to 5 mm), low vibration noise, strong resistance for shock overload. This project aims to achieve the design theory and implementation technology of controllable magnetic coupling transmission. The optimization design criteria and methods of structure parameters are proposed by research on mechanisms and characteristics of magnetic coupling transmission. In the view of the whole rotor shaft system, the multi-dimensional nonlinear magnetic coupling rotor dynamics model is established by adopting multidisciplinary theory and the principles and methods of on-line regulation for the multidimensional magnetic coupling stiffness are achieved by analyzing the influence of the sensitive parameters on the nonlinear dynamics of shafting. Adopting the modern nonlinear multivariable control theory and method, the online intelligent control strategies are studied and achieved based on the high quality and stable operation in all working conditions. The characteristics of magnetic coupling transmission, shafting dynamics and control strategy are experimentally studied in the comprehensive experimental verification platform, which provides experimental support for the proposed design theory and implementation method. The research results will provide the new theoretical method and technological approaches for the development and reform of the power transmission technology of rotating machinery.
本项目提出了一种非物理接触式可控永磁涡流磁耦合传动新方法,能够实现多维磁耦合刚度在线可控,具有不对中容差大(偏心最大可达5mm)、振动噪声低、抗冲击过载能力强等优点。以可控永磁涡流磁耦合传动设计理论和实现方法为研究目标,通过可控磁耦合传动机理分析及特性研究,给出结构参数优化设计准则和方法;从整个转子轴系的角度出发,采用多学科理论建立多维非线性磁耦合转子动力学模型,在分析敏感参数对轴系非线性动力学特性影响的基础上,给出多维磁耦合刚度在线调控准则和方法;采用现代非线性多变量控制理论和方法,探究并给出轴系全工况高品质稳定运行的在线智能化控制策略;通过综合实验验证平台对磁耦合传动特性、轴系动力学及控制策略进行实验研究,为所提设计理论及实现方法提供实验支撑。该项目研究成果将为旋转机械动力传动技术的发展和变革提供新的理论方法和技术途径。
针对永磁涡流联轴器的研究涉及多学科交叉领域,从转子轴系角度出发,采用电磁学、转子动力学、振动力学、非线性动力学、热力学等多学科理论和方法,考虑热效应、背铁饱和效应、趋肤效应及涡流感抗特性,建立了系统电-磁-热多场耦合模型,提高了模型的准确性;对其电磁特性、温度特性及传动特性进行了深入研究,揭示了各敏感参数对永磁涡流磁耦合器传动特性的影响规律,提出了永磁涡流联轴器结构参数优化设计准则及快速优化方法;搭建了集耦合传动特性、轴系动力学特性及智能控制研究于一体的转子轴系实验平台,验证了所提出模型的正确性。基于多体转子动力学研究方法,针对永磁涡流联轴器不对中耦合刚度变化规律,建立了永磁涡流联轴器轴系多体动力学模型,对永磁涡流联轴器不对中容差大小、负载启动能力、过载保护、自适应负载能力抗冲击能力范围进行了探究,揭示了磁耦合传动对转子轴系动力学特性及稳定性的影响规律,拓展了磁耦合传动理论研究视野,为磁耦合传动实际应用奠定了全局理论基础。本课题取得的一系列进展与创新型成果更深入的探究了永磁涡流联轴器全影响因素,完善了数学模型,创新型的从轴系动力学角度进行研究,为最终推进永磁涡流联轴器走向广泛应用奠定重要基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
粗颗粒土的静止土压力系数非线性分析与计算方法
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
物联网中区块链技术的应用与挑战
敏感性水利工程社会稳定风险演化SD模型
永磁环静止型场调制轴向磁齿轮机理及传动特性研究
永磁交流伺服驱动精密齿轮传动系统机电耦合振动特性研究
可控气-磁混合支撑超精轴系的研究
机电集成磁齿轮传动系统机电耦合动力学