Turbine blades are the core high-temperature components of aero-engine. Its material developing into SiC ceramics matrix composite (CMC) is an inevitable trend. The intracavity of the blades, the Si-CMC material and the complexity of the shape make the manufacturing a huge challenge. Based on the additive manufacturing technology, the resin shell and fiber holder of the blades are made; relying on the fiber holder, the fiber preform input into turbine blade is obtained by fiber weaving technology; the interface layer of fiber is produced by chemical vapor deposition; the SiC matrix is manufactured by the gelcasting and reaction infiltration. Therefore a new method of manufacturing SiC-CMC blades is put forward. The influence rules of the structural parameters of fiber preform on the high-temperature strength and toughness of the SiC-CMC blades is to be studied, and the physical nature of high-temperature strengthening and toughening is explored; the thermal stress distribution of interface layer of fiber is researched, the high temperature damage conditions and the failure mechanism of interfacial layer are revealed; the influence of the process conditions, the property of solid phase、pore structure in gelcasting on rheological property is studied, and the plugging law in the internal blade shell is discussed; The transformation mechanism of residual Si in reaction infiltration is researched, and the relationship between process、microstructure、high-temperature strength and toughness is explored to provide the theoretical basis for developing new manufacturing technology of high-temperature strengthening and toughening SiC-CMC blades.
涡轮叶片是航空发动机的核心高温部件,其材料向SiC陶瓷基复合材料(CMC)发展是必然趋势,叶片的内腔/SiC-CMC材料/外形的复杂性,使得其制造成为一个巨大的挑战。为此,基于增材制造技术,成形叶片的树脂型壳和纤维支架;依托纤维支架,采用纤维编织,制造植入叶片型壳的纤维预制体,通过化学气相沉积,制备纤维的界面层;借助凝胶注模和反应熔渗方法,制备SiC基体,由此提出一种制造SiC-CMC叶片的新途径。拟研究纤维预制体的结构参数对SiC-CMC叶片高温强韧性的影响规律,探明纤维高温强韧化的物理本质;研究纤维受力中界面层热应力分布规律,提出界面层高温损伤条件,揭示界面层的失效机理;研究凝胶注模中工艺条件、固相属性、孔隙结构多因素对浆料流变性的影响,探寻叶片型壳内部堵塞规律;研究反应熔渗中残留Si转化机制,查找工艺、组织、高温强韧性之间关系,为发展高温强韧化SiC-CMC叶片制造新技术提供理论依据。
基于该面上基金的资助,探讨了化学气相渗透过程工艺参数对渗透产物的影响规律,并确定最佳工艺来制备界面层;研究了树脂、水基SiC素坯制备及其精度控制方法;研究了陶瓷浆料在纤维预制体内的充型与计算;研究SiC陶瓷基复合材料力学性能与残硅控制,分析了基于光固化成型技术的凝胶注模制造涡轮叶片的工艺、组织结构和性能的关系。研究表明:(1)对纤维预制体表面制备SiC界面层,选择SiC纤维作为预制体材料,通过化学气相渗透CVI工艺作为界面层制备工艺,当氢气与三氯甲基硅烷(H2/MTS)流量比为10、沉积时间为4h、氢气流量为2000ml/min,渗透温度为1050℃时,可制备厚度约为1μm的SiC界面层。(2)树脂基陶瓷浆料纤维预制体充型,纤维预制体孔隙较小,陶瓷浆料固相越高粘度越大,进而浆料充型能力越差。实验验证了当陶瓷浆料从25vol%降至15vol%时,纤维预制体充型能力最好,纤维束间孔被完全充满。(3)模拟了水基陶瓷浆料叶片充型,模拟结果显示当粘度从0.8 Pa•s上升至1.2 Pa•s时,浆料内气泡无法及时排出,最终形成较大较深的宏观气孔裂纹。(4)优化浸渗剂配方,以硅锆合金代替硅单质作为浸渗剂,反应烧结获得SiC陶瓷基复合材料,其物相组织主要包括SiC、Si和ZrSi2。当浸渗剂中硅锆质量比为1:1时,烧结体的残硅含量为12.5vol%,相比于硅单质浸渗试样,残硅含量降低67.0%,1500℃时弯曲强度为20.5MPa。(5)连续SiCf/SiC复合材料中SiC纤维虽制备了界面层且纤维体积含量达到35vol%以上,但由于其内部孔隙较多其断裂韧性仅为5.53MPa.m1/2,室温弯曲强度仅为280±21MPa,1500℃弯曲强度为117±42MPa;连续Cf/SiC复合材料中碳纤维在反应烧结过程中硅化严重,未起到增韧效果其断裂韧性仅为4.68MPa.m1/2,然而由于致密度较高室温弯曲强度达到386±36MPa,1500℃弯曲强度为174±27MPa;Si/SiC复合材料其致密度最高,室温弯曲强度达到410±17MPa,然而基体内残硅较多,1500℃弯曲强度为下降到10MPa以下,并且由于无增韧相,断裂韧性仅为3.23 MPa.m1/2。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
特斯拉涡轮机运行性能研究综述
硬件木马:关键问题研究进展及新动向
基于多模态信息特征融合的犯罪预测算法研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
面向增材制造的涡轮叶片内部填充桁架点阵结构的冷却机理研究
涡轮叶片的光内送粉变光斑高效增材制造方法及机理研究
航空发动机高温合金涡轮叶片增材制造/修复熔池流动稳定性与缺陷形成关联研究
高性能铝基复合材料冷喷涂固态增材制造成形机理及其强韧性调控