Renewable energy application and micro-grid technology on ship is an important way to solve the problem of energy shortage and ocean environment pollution. However, due to the strong coupling and high complexity of the ship power system, higher dynamic control performances of the existing micro-grid technology are required. For the features of small power capacity, heavy load and step change, various operating mode of marine electric system, and intermittent and fluctuant of renewable energy, the existing micro-grid techniques on land cannot be applied to ship directly. In this project, for the marine micro-grid which is compose of diesel generator, lithium battery and photovoltaic, and taking dynamic modeling theory, nonlinear control methods , simulation and experiments as technical means, a series of fundamental research about energy dynamic control strategy on marine micro-grid in load step change is carried out. Among them, three key scientific problems would be proposed and solved. Firstly, the internal coupling relation between diesel generator and inverter power whereas those influential correlations among internal parameters to power quality are studied. Secondly, the control algorithm of inverter with fast tracking power parameter variation would be researched. Thirdly, the coordinated control strategy among photovoltaic, diesel generator, and battery aiming to maintaining micro-grid steady and reliability in dynamic state would be proposed. Finally, those theory and control strategy with correctness and advancement would be verified by analyzing those results from simulation and experiment. The achievements of this project will provide a solution to improve the dynamic stability of micro-grid technology, and supply theoretical basis and technical principle for micro-grid technology applied on ship.
船舶新能源应用与微网技术是解决海上能源与环境问题的重要途径,但船舶电力系统的强耦合、高复杂性对现有微网技术的动态控制性能提出了更高的要求。由于船舶微网具有小容量大负载、工况多样性、新能源的波动性与间歇性、负载变化大等特点,使得现有陆上微网技术难以有效满足船舶微网系统的需求。课题以柴油发电机、锂电池、光伏组成的船舶微网为对象,以动态建模理论、非线性控制方法、仿真实验等为技术手段,开展负载突变时船舶微网能量动态控制策略基础研究,重点解决柴油发电机组与逆变电源之间相互耦合关系及其影响船舶微网电能质量参数动态变化的内在机理、快速跟踪参数变化时逆变电源的控制算法、满足系统动态稳定可靠运行为目标的光柴储三种能源之间协调控制策略三个关键科学问题,并通过仿真与实验数据验证理论分析与控制策略的正确性与先进性。研究成果将为提高微网技术动态稳定性提供一种解决方法,为微网技术在船舶上应用提供理论基础与技术原理。
针对对船舶的节能减排要求不断提高,新能源应用与微网技术是解决海上环境污染问题的重要途径,采用新能源技术构成船舶微网系统受到越来越多的关注。但船舶微网系统的强耦合、高复杂性对现有微网技术的动态控制性能提出了更高的要求。本项目在构建基于太阳能、锂电池以及传统柴油发电机组成的船舶微网基础上,针对船舶微网具有频繁负荷突变和光储微源输出功率波动的特点,主要研究:1)多能源船舶微网拓扑结构与建模2)多能源船舶微网能源配置优化和能量规划研究3)多能源船舶微网协调控制策略研究4)试验和应用论证研究。获得的研究结果包括:1)提出了基于光柴储的三种船舶微网拓扑结构,分析了突变负载下船舶微网电能质量影响机理,为开发低污染、低排放、可持续的绿色能源动力系统提供了理论依据和解决方案。2)提出了基于电流前馈和模糊控制的储能动态能量调度策略,研发了新型能量管理及综合监控系统,为提升船舶续航能力和安全运行提供理论指导和技术支撑。3)采用新能源、电力推进以及网络云计算等先进技术,完善船舶微网科研平台,实现船舶微网能量管理系统及集成等关键技术的研发,开发了一套满足中国船级社要求的基于的光柴储多能源船舶微网系统,与合作企业联合开发了基于船舶微网的国内首台(套) 环保舒适型游览船。根据实船测量和计算,NOX排放降低50%以上,机舱的舱底水几乎无生成量,主要客舱噪声不高于55dB,节能20%以上。本项目重点解决了船舶微网运行的动态稳定性关键科学问题,提高了游览船舶节能减排性能,为微网技术在船舶上应用提供理论基础与技术原理,具有解决方法上的科学意义。本项目研究成果较好解决了目前旅游船舶由于采用柴油机动力系统驱动所引发日益严重的水资源等环境污染问题,并极大提升游客的旅游品质,具有较好应用前景,并为提高我国绿色船舶设计及生产提供一种解决方案,进一步提升我国沿海、内河、湖库区水域交通运输的科技水平。
{{i.achievement_title}}
数据更新时间:2023-05-31
监管的非对称性、盈余管理模式选择与证监会执法效率?
黄河流域水资源利用时空演变特征及驱动要素
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于图卷积网络的归纳式微博谣言检测新方法
风光储柴独立混合微电网能量多目标优化及电压稳定性研究
基于电压补偿和负荷供需平衡的风光储微网优化控制策略
船舶综合电力系统多尺度分布式能量管理策略研究
多能互补微网系统能量管理系统的研究