Al-Mg-Si-Cu alloys are widely used due to their great compatibility, low density and good strength. Nano-sized Guinier-Preston (GP) zones and needle-like metastable precipitates are strengthening phases for Al-Mg-Si-Cu alloys during aging, the formation and transformation of these metastable phases are crucial information for the design and control of the performance of Al alloys, but it is difficult to identify these metastable phases and their effects to the properties of alloys only by experiments. The present project plans to incorporate first-principles calculations, CALPHAD (CALculation of PHase Diagram) method and key experiments to work on the following aspects: 1) Using first-principles calculations to find the stable compositions, crystal structures, energies and elastic properties of the GP zones and metastable phases by searching all the possible configurations, using first-principles lattice dynamics and quasi-harmonic approximation to study the finite temperature thermodynamic and elastic properties, and determine the phase stability and transformation of the metastable phases at different temperatures. 2) Prepare key samples with metastable phases by following the industrial Aluminum production processes, and using comprehensive experimental characterization techniques to verify the predicted results predicted from fist-principles. 3) Using CALPHAD method to establish a thermodynamic and elastic databases containing GP zones and metastable phases based on the crystal structure, thermodynamic and elastic date, and predict the phase transition sequences during ageing and metastable phase diagrams. The completion of this project will implement the thermodynamic properties of the GP zones and metastable phases in the thermodynamic and elastic database, extend the application area of CALPHAD method. It is highly expected that the present work will provide the theoretical basis to the design and control of the performance and heat treatment parameters of Al alloys.
因时效过程析出纳米尺度的GP(Guinier-Preston)区和系列亚稳强化相,Al-Mg-Si-Cu合金具有优异的成形性和较高的比强度。定量描述GP区和亚稳相的生成与相互转变过程是Al-Mg-Si-Cu合金性能优化和提高的关键。当前仅凭实验很难准确阐明GP区和亚稳相之间的转变。本项目拟集成第一原理计算、相图计算和关键实验开展如下工作:1)基于文献报道的GP区和亚稳相的结构,通过第一原理计算寻找稳定构型,并计算各相高温热力学及弹性性质,从而预测不同温度下各析出相的结构稳定性与相变;2)制备含亚稳相的样品,综合多尺度实验技术验证第一原理预测的结构和弹性性质;3)采用相图计算方法建立含GP区和亚稳相的Al-Mg-Si-Cu体系热力学和弹性数据库,从而构筑亚稳相图并预测时效强化过程的相变序列。项目的完成将扩展相图计算的应用范围,为设计和改善铝合金的热处理工艺与性能提供理论基础。
因时效过程析出纳米尺度的GP(Guinier-Preston)区和系列亚稳强化相,Al-Mg-Si-Cu合金具有优异的成形性和较高的比强度。定量描述GP区和亚稳相的生成与相互转变过程是Al-Mg-Si-Cu合金性能优化和提高的关键。本项目集成第一原理计算、相图计算和关键实验开展了时效强化Al-Mg-Si-Cu合金GP区和亚稳相的热力学和弹性研究及其它相关的研究。.本项目的研究按照项目计划执行。项目执行期内,基于文献报道的GP区和亚稳相的结构:1)通过第一原理计算寻找稳定构型,并计算各相高温热力学及弹性性质,预测了不同温度下各析出相的结构稳定性与相变;2)制备了含亚稳相的样品,综合多尺度实验技术验证第一原理预测的结构和弹性性质;3)用相图计算方法建立含GP区和亚稳相的Al-Mg-Si-Cu体系热力学和弹性数据库,从而构筑亚稳相图并预测时效强化过程的相变序列。本项目的研究方法及成果还拓展到了其它相关体系的研究,并取得一定的成果。.在本项目的资助下,发表相关学术论文16篇。项目执行期间,项目负责人被聘为副教授,博士生导师。培养了硕士研究生3位,其中1位提前攻博,2位将于2020年上学期毕业。另有1位参与本项目的联合培养硕士研究生毕业。本项目的实施,锻炼了项目负责人在相图热力学、第一原理计算及材料设计方面的研究能力。本项目的完成拓展了以第一原理和相图计算为核心的材料设计方法,培养了高性能材料设计领域的复合型人才,扩展了相图计算的应用范围,为设计和改善铝合金的热处理工艺与性能提供理论基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
瞬态波位移场计算方法在相控阵声场模拟中的实验验证
采用黏弹性人工边界时显式算法稳定性条件
环境信息披露会影响分析师盈余预测吗?
不同分子分型乳腺癌的多模态超声特征和临床病理对照研究
稀土镁合金时效析出亚稳相β"相的生长动力学及强化机制
自然时效对SiC/Al-Mg-Si-Cu复合材料人工时效强化的影响
铝合金中GP区与亚稳相周围晶格变形场的定量电子显微学研究
Al-Mg-Si合金亚稳相晶体结构和热力学性质的原子尺度模拟